MII—P S

TECHNOLOGIES

MIPS64™ Architecture for Programmers
Volume IV-c: The MIPS-3D™
Application-Specific Extension to the MIPS64™
Architecture

Document Number: MD00099
Revision 1.11
March 12, 2001

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 1999-2001 MIPS Technologies, Inc. All rights reserved.
Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies™). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. Ata minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS |, MIPS I, MIPS 1lI, MIPS IV, MIPS V, MDMX,

SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV

and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

Table of Contents

Chapter 1 ADOUL THIS BOOKceiiiiiiiiiiee ettt e e e o444 —— £ £t 2222224111 nb bt be e 1.
1.1 Typographical Conventions
0 R 1 = [= T PP OPPPRPPPPPPRPRN
L1.1.2 BOI TEXE .eeeeiiiiiiee ettt ettt e e .
R I 01U 1= g I =) PP PR OUP PRSPPI 1.
1.2 UNPREDICTABLE and UNDEFINED
1.2.1 UNPREDICTABLE.......coiitiiiiii ettt
1.2.2 UNDERINED.......coiitiie ittt ettt e sttt e bt e e s st et e 41t et 42t st s £ 45444 b et e e b b e e 2
1.3 Special Symbols in PSEUAOCOTE NOTALION...........uuiiiiiiiiiee i+ s——— et e 2122
R o Y To] (=N [0 (o T4 4 F= X o o RO PP PP PPPPPRPOPPI 5.
Chapter 2 Guide 10 the INSIIUCTION SET.........uuiiiiiiiii ettt ——— 2221 n b et e e e e neee 1.
2.1 Understanding the INStruCtion FIeldScuuiiiiiiiiiieii et s emmmmmneeeeeeesseeeeeeaeeeeeesennnis
0 I A 1 1 0 T 1o) = o R PP PRURPR 8.
2.1.2 Instruction Descriptive Name and MNEMONICiiiuuiiiiiiiiie ettt eee e e e e e e e bbb e mmmmmnns oo 9
N I o T 0 = B 1= o PP PRSP 9.
2.1.4 PUIPOSE FHEI ...ttt ettt e e ekt e e e e e e s e e b et e e e e nbre e e e e annreas 10
2.1.5 DeSCHPLON FIEIH. ... ettt e et e e s n e e e e e e aann e e e e s sbbe e e e s annnneeeean 10
2.1.6 RESIICHONS FIEIA ...ttt e e e e e e e st et ee e e e e e e e e e e e s 10
2.1.7 Operation Field
2.1.8 EXCEPLONS FII.....cceiiiiieiie ittt e ettt e e 4t ¢ s—— 11411 e s 11
2.1.9 Programming Notes and Implementation Notes FieldsS ... e 11
2.2 Operation Section Notation and Functions
2.2.1 Instruction EXeCUtion OFAEriNg..........uvteiiiiiiieeiiiiieie et
2.2.2 PSeUdOCOTE FUNCHONS.coiitiiiiieiiiiet ettt ettt st e e s nnsb e e e e
2.3 Op and Function Subfield NOtationccceieiiiiiiiiiic e
2.4 FPU INSITUCTIONS ..ceiiiieeiii ittt et e e e e e a4 e e sttt e et e e eeaeeeeaaaanae s et s ¢ ot £ £ 5444444444410 n et b e e ee e s
Chapter 3 MIPS-3D™ Application-Specific Extension to the MIPS64™ Architectureccccccvveeeeevievccciiivie s 23..
3.1 Base ArchiteCture REQUITEIMENTS........uuuiiiiiieiee e e e e it e e e e e e e s e s s st e e e e e aeeeesass st e nreeerereeeaeeessssnnnnnrnnnnees 23
3.2 Software DeteCtion Of tNE ASE ...t e e e 23
3.3 MIPS-3D OVEIVIEW ... iteee ettt etttk et e sk e s e e sk e e s et e s s e e e an s et e s s mmm e e e nan e e e ser et e snneeennneeennneees 23
G S 1 1Y 1 0 o o =T A = oo Yo LT T R 24
Chapter 4 The MIPS-3D™ ASE INSIIUCLION SEL.....cciiiiiiiiiiiiiiiiii ittt eee e s s mmmnne s 27
4.1 MIPS-3D INStrUCHION DESCHIPLIONS.ceeiiiiiiiitie ettt e e e e e e e b bt e e e e e e e e e sammnneeeeeees s snnbnbaeeeeeaeess 27
APPENTIX A REVISION HISTOTY ...ttt ettt e e e e e e e ettt et e et e e e e e e s s rmmmmememamnt e e e 24 e e s nbbebeeeeeeeaaaeens 51

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 i

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 2-18:
Figure 2-19:
Figure 2-20:
Figure 2-21:
Figure 2-22:
Figure 2-23:
Figure 2-24:
Figure 2-25:
Figure 2-26:
Figure 2-27:
Figure 2-28:

Example of INStruCtioN DESCIPLIONuuiiiiiiiiiieii ittt e e e e e e s sommmmemeeeeenss et eeeeaeeeeeeaannnnnes 8.
Example of INSTUCLION FIEIASoooiiiiie e e bbb e e e e e e e e e 9.
Example of Instruction Descriptive Name and Mnemonic
Example of Instruction Format
Example of INSLIUCLION PUIMPOSEeiiiiiiiieiiitete ettt et e e e e ee e e e eeeaasmme e e e e e s e s abebeeeeeeas
Example of Instruction Description
Example of Instruction Restrictions
Example of Instruction Operation
Example of Instruction Exception
Example of Instruction Programming NOTES.........c.uuiiiiiiiiiieiiii it ———— e e
COP_LW Pseudocode Function
COP_LD PseudoCode FUNCLION.............cciviiiieieiiiiiiiiiicss i s s e s e e s e e e e e e ae e e e e et et et e e s eeeeemeeennnnnnseseeeeeeaaaaeaeees

(010 =AYV =LT=T0 o [oToTo o <IN LU oo 1o o 1SS

COP_SD PseudoCode FUNCHION..........ccoeiiiiiieie e s e s e e e e e e e e e e e e e s e mennmmn e e e e eeeeaaaaeaeees 14
AddressTranslation Pseudocode Function 14
LoadMemory Pseudocode Function 15

StoreMemory Pseudocode Function .15
Prefetch PSEUdOCOAE FUNCHIONoiiii ittt et e et e et e e st mmmmmmmmmmm———— s seaa s sabasesnnnsnns 16
ValueFPR PSeUdOCOUE FUNCLONciiii ettt e et e e et mmmmmm—m———— e e s b e esbases 17

StoreFPR PSeUAOCOTE FUNCHONcoceiiiiiieiieteeeee ettt ee e e e e e s e e e e e e e e e e e e
SyncOperation Pseudocode FUNCLON............ciiiiiiiiiiiie e

SignalException Pseudocode Function
NullifyCurrentinstruction PseudoCode Function
CoprocessorOperation Pseudocode Function
JumpDelaySlot Pseudocode Function
NotWordValue PSeudocode FUNCHONuuiiiiiiiiie i e e e
FPConditionCode Pseudocode Function
SetFPConditionCode PSeUdOCOdE FUNCHON........coiiiiiiiiiiiieiie ettt st

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

List of Tables

Table 1-1: Symbols Used in Instruction Operation StatemMeENTScooiiiiiiiiiiiiiiiie e mmeneeeeeeeeeee e e e e 3
Table 2-1: AccessLength Specifications fOr LOAAS/STOIESccuiiiiiiiiiiiiiiiiieieee e e 22 16
Table 3-1: Instructions in the MIPS-3DTM ASE ... et e e e e e e e e e e e e 24
Table 3-2: Symbols Used in the Instruction Encoding TablesS..........cccooiiiiiiiiiii e 24
Table 3-3: MIPS-3D COP1 ENCOdiNg Of 1S FI@Iduuuuiiieii i e e e e e e e e e e e e e e s 25
Table 3-4: MIPS-3D COP1 Encoding of Function Field When rS=Siiiiiiiiii e eeeeeeeeeeeenen e 25
Table 3-5: MIPS-3D COP1 Encoding of Function Field WHhen rS=Dcovvviiiiiiiiiiiiiiiie e eeenenres 25
Table 1: MIPS-3D COP1 Encoding of Function Field When rS=W OF L. 25
Table 3-6: MIPS-3D COP1 Encoding of Function Field When rS=PS...........oiiiiiii e 26

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 iii

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

Chapter 1

About This Book

The MIPS64™ Architecture for Programmers Volume IV-c comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS64™
Architecture

» Volume |l provides detailed descriptions of each instruction in the MIPS64™ instruction set

* Volume 11l describes the MIPS64™ Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS64™ processor implementation

* \olume IV-a describes the MIPS16™ Application-Specific Extension to the MIPS64™ Architecture
* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64™ Architecture
* Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture

* \olume IV-d describes the SmartMIPS™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS64™ document set

1.1 Typographical Conventions

This section describes the usetalfic, bold andcourier fonts in this book.

1.1.1 Iltalic Text
* is used foemphasis

* is used fobits, fields registers that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and vditmating point instruction formatsuch ass, D, andPS

* is used for the memory access types, sudaeasedanduncached

1.1.2 Bold Text
 represents a term that is beuhefined

* is used fobits andfields that are important from a hardware perspective (for instaggister bits, which are not
programmable but accessible only to hardware)

* is used for ranges of numbers; the range is indicated by an ellipsis. For inStdnndjcates numbers 5 through 1

* is used to emphasiz¢éNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 1

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

The termdUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain caséNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never callldDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can caud®lPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If aresultis generated,
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

Implementations of operations generatiiyPREDICTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is
inaccessible in the current processor mode. For exatdNIBREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instrudh@EFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer coddiNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are Tiatdd i1

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

1.3 Special Symbols in Pseudocode Notation

Table 1-1 Symbols Used in Instruction Operation Statements

binary
efix is

Symbol Meaning
- Assignment
=% Tests for equality and inequality
Il Bit string concatenation
xY A y-bit string formed by copies of the single-bit value
A constant valua in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" pr
omitted, the default base is 10.
X Selection of bitg/ throughz of bit stringx. Little-endian bit notation (rightmost bit is 0) is usedyli less than
y..Z z, this expression is an empty (zero length) bit string.
+, - 2's complement or floating point arithmetic: addition, subtraction
0 x 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPRI[X] CPU general-purpose registerThe content o6PR[0] is always zero.
FPR[x] Floating Point operand register
FCC[CC] Floating Point condition code CECCJ0] has the same value @OC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register
CPRJ[z,x,s] Coprocessor unit, general registex, selects
CCRJ[z,X] Coprocessor unit, control registek
COCJz] Coprocessor unit condition signal
Xlat[x] Translation of the MIPS16 GPR numbento the corresponding 32-bit GPR number
Endian mode as configured at chip reset.(Gttle-Endian, 1- Big-Endian). Specifies the endianness of t
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the end
of Kernel and Supervisor mode execution.

ne
lanness

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
The endianness for load and store instructions (Ottle-Endian, 1 Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by settingRifihit in the Statusregister. Thus, BigEndianCPU may be comput

as (BigendianMem XOR ReverseEndian).

ed

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in User mode g
is implemented by setting tHREDbit of the Statusregister. Thus, ReverseEndian may be computed asg SR
User mode).

nly, and

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-wiritiis set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other ¢
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception
instructions.

PU
return

This occurs as a prefix @perationdescription lines and functions as a label. It indicates the instruction {
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the curre
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to
label ofl. Sometimes effects of an instruction appear to occur either earlier or later — that is, during th
instruction time of another instruction. When this happens, the instruction operation is written in sections |
with the instruction time, relative to the current instructioim which the effect of that pseudocode appears
occur. For example, an instruction may have a result that is not available until after the next instruction. S
instruction has the portion of the instruction operation description that writes the result register in a se
labeledl +1.

The effect of pseudocode statements for the current instruction labellexppears to occur “at the same timg
as the effect of pseudocode statements labldiecthe following instruction. Within one pseudocode sequen
the effects of the statements take place in order. However, between sequences of statements for diffe
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a f
order of evaluation between such sections.

ime
nt

A time
e
abeled
to

uch an
tion

ce,
ent
articular

PC

TheProgram Countewralue. During the instruction time of an instruction, this is the address of the instru
word. The address of the instruction that occurs during the next instruction time is determined by assig
value toPC during an instruction time. If no value is assigneB@during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 inst|
or 4 before the next instruction time. A taken branch assigns the target addresP@dheng the instruction
time of the instruction in the branch delay slot.

tion
ning a

uction)

PABITS

The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 p
address bits were implemented, the size of the physical address space w6l '5e=22%6 bytes.

hysical

SEGBITS

The number of virtual address bits implemented in a segment of the address space is represented bﬁstg
SEZ%BITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segriéit'i
= bytes.

e symbol

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 33
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-b|
in which 64-bit data types are stored in any FPR.

In MIPS32 implementation§;P32RegistersModes always a 0. MIPS64 implementations have a compatibi
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a ca
FP32RegisterModes computed from the FR bit in thetatusregister. If this bit is a 0, the processor operat
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value oFP32RegistersModds computed from the FR bit in ti8tatusregister.

» 32-bit
it FPRs

ity
1se
es

InstructionIinBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a
jump. This condition reflects trdynamicstate of the instruction, not te&atic state. That is, the value is fals
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
executed in the delay slot of a branch or jump.

pranch or
e.
is not

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the 3
parameter as an exception-specific argument). Control does not return from this pseudocode function
exception is signaled at the point of the call.

rgument
- the

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

1.4 For More Information

1.4 For More Information
Various MIPS RISC processor manuals and additional information about MIPS products can be found atthe MIPS URL.:
http://www.mips.com
Comments or questions on the MIPS64™ Architecture or this document should be directed to
Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 5

Chapter 1 About This Book

6 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields” on page 8

* “Instruction Descriptive Name and Mnemonic” on page 9

» “Format Field” on page 9

» “Purpose Field” on page 10

» “Description Field” on page 10

» “Restrictions Field” on page 10

» “Operation Field” on page 11

» “Exceptions Field” on page 11

» “Programming Notes and Implementation Notes Fields” on page 11

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 7

Chapter 2 Guide to the Instruction Set

Instruction Mnemonic

and Descriptive Name —# Example Instruction Name EXAMPLE

Instruction encodin

constant and variabg:e\ 31 26 25 21 20 16 15 11 10 6 5 0

field names and values SPECIAL rs rt rd 0 EXAMPLE
000000 00000 000000

Architecture level at 6 5 5 5 5 6

which instruction was

defined/redefined and

assembler format(s) fOI'/V Format: EXAMPLE rd, rs,rt MIPS32

each definition
Short description ———————» Purpose:to execute an EXAMPLE op

Symbolic description i A
Description: rd « rs exampleop rt

Full description of / This section describes the operation of the instruction in text, tables, and
instruction operation illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions on Restriction
instruction and strictions

operands This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

High-level language .
description ofinstruction\> Oper.atlon: . . .) L
operation * This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
[* Description section is not, but is also missing information */
[* that is hard to express in pseudocode.*/
temp ~ GPR][rs] exampleop GPR]rt]
GPR[rd] - sign_extend(temp 31.0)

Exceptions that

. . Exceptions:
instruction can cause

A list of exceptions taken by the instruction

Notes for programmers —— g Programming Notes:
Information useful to programmers, but not necessary to describe the operation of
the instruction
Notes for impl t .
Otes Torimplementors ——— g | nlementation Notes:
Like Programming Notesexcept for processor implementors

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The following
rules are followed:

8 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

2.1 Understanding the Instruction Fields

» The values of constant fields and tdpeodenames are listed in uppercase (SPECIAL and ADBigare 2-3.
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

All variable fields are listed with the lowercase names used in the instruction descrigtidrafidrd in Figure 2-2.

Fields that contain zeros but are not named are unused fields that are required to be zero (bigwE&®H]. If
such fields are set to non-zero values, the operation of the procddBREDICTABLE .

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, a§isfuve/n in
2-3.

Add Word ADD

Figure 2-3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in theFormatfield. If the instruction definition was later extended, the architecture levels at which it was extended
and the assembler formats for the extended definition are shown in their order of extension (for an example, see
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in previous
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the extended
architecture.

Format: ADDd,rs, rt MIPS32 (MIPS I)

Figure 2-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at which
the instruction was first defined, for example “MIPS32” is shown at the right side of the page. If the instruction was
originally defined in the MIPS | through MIPS V levels of the architecture, that information is enclosed in parentheses.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data

show an assembly format with the actual assembler mnemonic for each valid valuenofitid. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 9

Chapter 2 Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purposefield gives a short description of the use of the instruction.

Purpose:
To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the righDeéthiption
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Description: rd < rs+rt
The 32-bit word value in GPR is added to the 32-bit value in GP&Ro produce a 32-bit result.

* If the addition results in 32-bit 2’'s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs

« If the addition does not overflow, the 32-bit result is signed-extended and placed intd GPR

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description irOherationsection.

This section uses acronyms for register descriptions. “GHR CPU general-purpose register specified by the
instruction fieldrt. “FPRTS’ is the floating point operand register specified by the instruction feltCP1 registerfd”
is the coprocessor 1 general register specified by the instructiofdfielCSR is the floating pointControl /Status
register.

2.1.6 Restrictions Field
TheRestrictiondield documents any possible restrictions that may affect the instruction. Most restrictions fall into one
of the following six categories:
« Vdid values for instruction fields (for example, see floating point ADD.fmt)
» ALIGNMENT requirements for memory addresses (for example, see LW)
« Valid values of operands (for example, see DADD)
« Valid operand formats (for example, see floating point ADD.fmt)

 Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards for
which some processors do not have hardware interlocks (for example, see MUL).

 Valid memory access types (for example, see LL/SC)

10 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

2.1 Understanding the Instruction Fields

Restrictions:

If either GPRrt or GPRrs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operationfield describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complementBdseriptionsection; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

if NotWordValue(GPR([rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE
endif
temp ~ (GPRIrs] 31|IGPR[rs] 310) +(GPR[M] 31|IGPR[rt] 310)
iftemp 3, #temp 3; then
SignalException(IntegerOverflow)
else
GPR[rd] < sign_extend(temp 31.0)
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2 , "Operation Section Notation and Functions" on page 12 for more information on the formal notation
used here.

2.1.8 Exceptions Field

TheExceptiondield lists the exceptions that can be cause®ppgrationof the instruction. It omits exceptions that can

be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not preseBkaegti@nssection.

2.1.9 Programming Notes and Implementation Notes Fields

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 11

Chapter 2 Guide to the Instruction Set

The Notessections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

12

In an instruction description, tl@perationsection uses a high-level language notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 12

» “Pseudocode Functions” on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements irQperationssection are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and include
the following:

» “Coprocessor General Register Access Functions” on page 12
» “Load Memory and Store Memory Functions” on page 14
» “Access Functions for Floating Point Registers” on page 16

» “Miscellaneous Functions” on page 18

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and how
a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into the
functions described in this section.

COP_LW
The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a load

word operation. The action is coprocessor-specific. The typical action would be to store the contents of memword in
coprocessor general register

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

2.2 Operation Section Notation and Functions

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memword A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW
Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory during
a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the contents of
memdouble in coprocessor general regigter

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt . Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD
Figure 2-12 COP_LD Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word operation.
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register

dataword ~ COP_SW (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
dataword : 32-bit word value
[* Coprocessor-dependent action */

endfunction COP_SW
Figure 2-13 COP_SW Pseudocode Function

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 13

Chapter 2 Guide to the Instruction Set

datadouble ~ COP_SD (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
datadouble : 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD
Figure 2-14 COP_SD Pseudocode Function

2.2.2.2 Load Memory and Store Memory Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In theOperationpseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccesslLengtfield. The valid constant names and values are showalite 2-1 The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly from
the AccessLengthnd the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence algorithm,
describing the mechanism used to resolve the memory reference.

Given the virtual addresgAddr, and whether the reference is to Instructions or Dat®j, find the corresponding
physical addresp@ddr) and the cache coherence algorithBCA) used to resolve the reference. If the virtual address
is in one of the unmapped address spaces, the physical addreS€Amde determined directly by the virtual address.

If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU determines the
physical address and access type; if the required translation is not present in the TLB or the desired access is not
permitted, the function fails and an exception is taken.

(pAddr, CCA) ~ AddressTranslation (vAddr, lorD, LorS)
/¥ pAddr: physical address */
/* CCA Cache Coherence Algorithm, the method used to access caches*/
I* and memory and resolve the reference */
I* vAddr : virtual address */
I* lorD : Indicates whether access is for INSTRUCTION or DATA */
/¥ LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-15 AddressTranslation Pseudocode Function

LoadMemory

The LoadMemory function loads a value from memory.

14 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

2.2 Operation Section Notation and Functions

This action uses cache and main memory as specified in both the Cache Coherence AlgGArand the access

(lorD) to find the contents cAccessLengtimemory bytes, starting at physical locatipfddr The data is returned in a
fixed-width naturally aligned memory elemeMgmElen. The low-order 2 (or 3) bits of the address and the
AccessLengtimdicate which of the bytes withiMemElemeed to be passed to the processor. If the memory access type
of the reference isncachedonly the referenced bytes are read from memory and marked as valid within the memory
element. If the access typedachedbut the data is not present in cache, an implementation-spsizéiandalignment

block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the entire
memory element.

MemElem — LoadMemory (CCA, AccessLength, pAddr, vAddr, lorD)

/* MemElem Data is returned in a fixed width with a natural alignment. The */

[* width is the same size as the CPU general-purpose register, */

I* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

I* respectively. */

* CCA Cache Coherence Algorithm, the method used to access caches */
I* and memory and resolve the reference */

/¥ AccessLength : Length, in bytes, of access */

I* pAdadr: physical address */
/* vAddr : virtual address */
/* lorD Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-16 LoadMemory Pseudocode Function

StoreMemory
The StoreMemory function stores a value to memory.

The specified data is stored into the physical locgtidddrusing the memory hierarchy (data caches and main memory)
as specified by the Cache Coherence Algorit6@A). TheMemElemcontains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes that are
actually stored to memory need be valid. The low-order two (or three) bgddfirand theAccessLengtfield indicate
which of the bytes within th®lemElendata should be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA Cache Coherence Algorithm, the method used to access */
* caches and memory and resolve the reference. */

/* AccessLength : Length, in bytes, of access */

/* MemElem Data in the width and alignment of a memory element. */

1* The width is the same size as the CPU general */

1* purpose register, either 4 or 8 bytes, */

I* aligned on a 4- or 8-byte boundary. For a */

[* partial-memory-element store, only the bytes that will be*/
I* stored must be valid.*/

I* pAdadr: physical address */

/¥ vAddr : virtual address */

endfunction StoreMemory

Figure 2-17 StoreMemory Pseudocode Function

Prefetch

The Prefetch function prefetches data from memory.

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 15

Chapter 2 Guide to the Instruction Set

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may increase
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA Cache Coherence Algorithm, the method used to access */
[* caches and memory and resolve the reference. */

/¥ pAddr: physical address */

/* vAddr : virtual address */

/* DATA Indicates that access is for DATA */

/* hint : hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-18 Prefetch Pseudocode Function

Table 2-1lists the data access lengths and their labels for loads and stores.

Table 2-1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

2.2.2.3 Access Functions for Floating Point Registers
The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are interpreted

to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a load
(uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

16 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

2.2 Operation Section Notation and Functions

value ~ ValueFPR(fpr, fmt)
/* value: The formattted value from the FPR */

[*fpr: The FPR number */
/* fmt: The format of the data, one of: */

* S,D, W, L, PS, */
/* OB, QH, */

* UNINTERPRETED_WORD, */

* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR — UNPREDICTABLE? | FPR[fpr] 31 0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode =0)
if (fpr o #0)then
valueFPR ~ UNPREDICTABLE

else
valueFPR — FPR[fpr +1] 31 o [[FPR[fpr] 310
endif
else
valueFPR ~ FPR]fpr]
endif
L, PS, OB, QH:
if (FP32RegistersMode =0) then
valueFPR ~ UNPREDICTABLE
else
valueFPR « FPR]fpr]
endif
DEFAULT:

valueFPR ~ UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-19 ValueFPR Pseudocode Function

StoreFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instructions.
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a different
format.

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 17

Chapter 2 Guide to the Instruction Set

StoreFPR (fpr, fmt, value)

[* fpr: The FPR number */
[* fmt: The format of the data, one of: */

I S,D, W, L, PS, */
I OB, QH, */

I UNINTERPRETED_WORD, */

I UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[for] — UNPREDICTABLE? | value 3;

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode =0)
if (fpr o #0)then
UNPREDICTABLE

else
FPR[fpr] « UNPREDICTABLE? | value 3;
FPR[for +1] « UNPREDICTABLE? | value &3 3,
endif
else
FPRI[fpr] ~ value
endif
L, PS, OB, QH:
if (FP32RegistersMode =0) then
UNPREDICTABLE
else
FPRI[fpr] ~ value
endif

endcase

endfunction StoreFPR
Figure 2-20 StoreFPR Pseudocode Function

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicsitgaebgcur in the same order for all
processors.

18 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

2.2 Operation Section Notation and Functions

SyncOperation(stype)
[* stype : Type of load/store ordering to perform. */

[* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation
Figure 2-21 SyncOperation Pseudocode Function
SignalException
The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalException(Exception, argument)

I* Exception : The exception condition that exists. */
[* argument: A exception-dependent argument, if any */

endfunction SignalException
Figure 2-22 SignalException Pseudocode Function
NullifyCurrentinstruction
The NullifyCurrentinstruction function nullifies the current instruction.

The instruction is aborted. For branch-likely instructions, nullification kills the instruction in the delay slot during its
execution.

NullifyCurrentinstruction()
endfunction NullifyCurrentinstruction
Figure 2-23 NullifyCurrentinstruction PseudoCode Function
CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

* z: Coprocessor unit number */
/* cop_fun : Coprocessor function from function field of instruction */
[* Transmit the cop_fun value to coprocessor z*

endfunction CoprocessorOperation

Figure 2-24 CoprocessorOperation Pseudocode Function

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 19

Chapter 2 Guide to the Instruction Set

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the four PC-relative instructions. The function returns TRUE
if the instruction avAddris executed in a jump delay slot. A jump delay slot always immediately follows a JR, JAL,
JALR, or JALX instruction.

JumpDelaySlot(vAddr)
[* vAddr :Virtual address */
endfunction JumpDelaySlot

Figure 2-25 JumpDelaySlot Pseudocode Function

NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such a value has bits 63..32 equal to bit 31.

result ~ NotWordValue(value)

/* result: True if the value is not a correct sign-extended word value; */
[* False otherwise */

/* value: A 64-bit register value to be checked */
NotWordValue value g3 3, #(value g;) 32

endfunction NotWordValue

Figure 2-26 NotWordValue Pseudocode Function

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
tf — FPConditionCode(cc)
/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then

FPConditionCode ~ FCSRy3
else

FPConditionCode — FCSRo44¢c
endif

endfunction FPConditionCode

Figure 2-27 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

20 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

2.3 Op and Function Subfield Notation

SetFPConditionCode(cc)
if cc = 0 then
FCSR — FCSR3y 4 || tf|| FCSR 22.0
else
FCSR «~ FCSR3y p54¢c || tf|| FCSR 23+cc..0
endif

endfunction SetFPConditionCode
Figure 2-28 SetFPConditionCode Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfiedgandfunctioncan have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 andunction=ADD. In other cases, a single field has both fixed and variable subfields, so the name contains
both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (suéth as
immediate and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in
uppercase.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
examplers=basein the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume |, in the chapters describing the CPU, FPU, MDMX, and MIPS16
instructions.

See Section 2.3 , "Op and Function Subfield Notation" on page 21 for a descriptioopatitfunctionsubfields.

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 21

Chapter 2 Guide to the Instruction Set

22 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

Chapter 3

MIPS-3D™ Application-Specific Extension to the MIPS64™
Architecture

This chapter describes the purpose and key features of the MIPS-3D™ Application-Specific Extension (ASE) to the
MIPS64™ Architecture.

3.1 Base Architecture Requirements

The MIPS-3D ASE requires the following base architecture support:
e The MIPS64 Architecture: The MIPS-3D ASE is not compatible with a MIPS32™ implementation.

e The MIPS64 floating point option with all data types implementedThe MIPS-3D ASE requires a floating point
implementation that includes the single (S), double (D), word (W), long (L), and paired single (PS) datatypes.

3.2 Software Detection of the ASE

Software may determine if the MIPS-3D ASE is implemented by checking the state of the FP itdnfth@CPO
register to determine if floating is implemented. If this bit is set, software should then enable access to Coprocessor 1 by
setting the CUL1 bit in the Status register and checking the state of the 3D biFiRtBB1 control register.

3.3 MIPS-3D Overview

The MIPS-3D ASE comprises thirteen instructions added to the floating-point instruction set. These instructions are
designed to improve the performance of graphics geometry code (triangle transform and lighting code) executed on the
MIPS processoiTable 3-1lists these thirteen instructions by function. Chapter 4, “The MIPS-3D™ ASE Instruction
Set,” on page 27, describes these instructions in greater detail.

The table and instruction descriptions use the following notations for data formats:

» S for single data format (32 bits)

D for double data format (64 bits)

» PS for paired-single data format (two singles in a 64-bit register)

» PL for paired-lower, the single value in bits 0-31 of the paired-single value in the 64-bit register

» PU for paired-upper, the single value in bits 32-63 of the paired-single value in the 64-bit register

* PW for paired-word data format (two words in a 64-bit register)

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 23

Chapter 3 MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture

Table 3-1 Instructions in the MIPS-3DM ASE

Type Mnemonic Valid Formats Instruction
Arithmetic ADDR PS Floating point reduction add
MULR PS Floating point reduction multiply
RECIP1 S, D, PS Reciprocal first step with a reduced precision result
RECIP2 S, D, PS Reciprocal second step (enroute to the full precision resulf)
RSQRT1 S, D, PS Reciprocal square-root with a reduced precision result
RSQRT2 S, D, PS Reciprocal square-root second step (enroute to the full pregision
result)
Format CVT.PS.PW PW Converts a pair of 32-bit fixed point integers to paired-singlg FP
conversions format
CVT.PW.PS PS Converts a paired-single FP format to a pair of 32-bit fixed point
integers
Compare CABS S, D, PS Magnitude compare of floating point numbers
Branch BC1ANY2F Branch if either one of the two specified (consecutive) condifion
codes is False
BC1ANY2T Branch if either one of the two specified (consecutive) condition
codes is True
BC1ANY4F Branch if any one of the four specified (consecutive) condition
codes is False
BC1ANYAT Branch if any one of the four specified (consecutive) conditipn
codes is True

3.4 Instruction Bit Encoding

Table 3-3throughTable 3-6describe the encoding used for the MIPS-3D A%&ble 3-2describes the meaning of the
symbols used in the tables. These tables only list the instruction encodings for the MIPS-3D instructions. See Volume |
of this multi-volume set for a full encoding of all instructions.

Table 3-2 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

(Also italic field name.) Operation or field codes marked with this symbol denotes a field glass.
o) The instruction word must be further decoded by examining additional tables that show valyes for
another instruction field.

Operation or field codes marked with this symbol are reserved for MIPS Application Specific
€ Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

24 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

3.4 Instruction Bit Encoding

m)

Table 3-3 MIPS-3DCOP1Encoding of rs Field

bits 23..21

bits 25..24

0

1

2

000

001

010

011

100

101

110

111

0

00

01

BC1ANY ¢

BC1ANY4¢e

10

1
2
3

11

function

bits 2..0

Table 3-4 MIPS-3DCOP1EnNcoding of Function Field When rs=S

0

bits 5..3

000

001

010

011

100

101

110

111

000

001

010

011

RECIPZ

RECIP1e

RSQRT1e

RSQRT2e

100

101

110

CABS.F

CABS.UN¢

CABS.EQe

CABS.UEQe

CABS.OLTe

CABS.ULTe

CABS.OLEe

CABS.ULEe

~N[(oja|lbh|wWN|FRL|O

111

CABS.SkE

CABS.NGLE¢

CABS.SEQe

CABS.NGL¢g

CABS.LTe

CABS.NGEe

CABS.LEe

CABS.NGTe

function

bits 2..0

Table 3-5 MIPS-3DCOP1Encoding of Function Field When rs

0

bits 5..3

000

001

010

011

100

101

110

111

000

001

010

011

RECIPZ

RECIP1e

RSQRT1e

RSQRT2e

100

101

110

CABS.F

CABS.UN¢

CABS.EQe

CABS.UEQe

CABS.OLTe

CABS.ULT¢

CABS.OLEe

CABS.ULEe

~N[o|jalb”~|WIN|R|O

111

CABS.SkE

CABS.NGLEg

CABS.SEQe

CABS.NGLe

CABS.LTe

CABS.NGEe

CABS.LEe

CABS.NGTe

function

bits 2..0

Table 1 MIPS-3DCOP1Encoding of Function Field When rs3V or L

0

bits 5..3

000

001

010

011

100

101

110

111

000

001

010

011

100

CVT.PS.PWe

101

110

~N[(oja|lbh|wWIN|FL|O

111

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

Chapter 3 MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture

26

Table 3-6 MIPS-3DCOP1Encoding of Function Field When rs#S

function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000
1| 001
2| 010
3 (011 ADDRe MULR ¢ RECIP2¢ RECIP1e RSQRT1e RSQRT2e
4 | 100 CVT.PW.PS
51101 PLL.PE PLU.PSe PUL.PSg PUU.PSe
6 | 110 CABS.F | CABS.UN¢ | CABS.EQe |CABS.UEQ¢g|CABS.OLTe|CABS.ULT¢|CABS.OLEEe|CABS.ULEE
7 | 111| CABS.SkE |CABS.NGLEgCABS.SEQe|CABS.NGL¢g| CABS.LTe [CABS.NGEe| CABS.LEe |CABS.NGTe

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

I+

4.1 MIPS-3D Instruction Descriptions

Chapter 4

The MIPS-3D™ ASE Instruction Set

4.1 MIPS-3D Instruction Descriptions

This chapter provides an alphabetic listing of the instructions list€ahie 3-1

I+

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 27

Chapter 4 The MIPS-3D™ ASE Instruction Set

Floating Point Reduction Add ADDR.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ADDR.PS

ft fs fd
010001 10110 011000
6 5 5 5 5 6
Format: ADDR.PS fd, fs, ft MIPS-3D
Purpose:

28

To perform a reduction add on two paired-single floating point values

Description: fd.PL ~ ft.PU + ft.PL; fd.PU « fs.PU + fs.PL

The paired-single values in FARare added together and the result put in the lower paired-single position didFPR
Similarly, the paired-single values in FRRare added together and the result put in the upper paired-single position
of FPRfd. The two results are calculated to infinite precision and rounded by using the current rounding mode in
FCSR The operands and result are values in format PS.

Any generated exceptions in the two independent adds are OR’ed todedlisebits are ORed into thElag bits if
no exception is taken.
Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of type PS. If they are not valid, the re&iNRPRE-
DICTABLE .

The operands must be values in format PS. If they are not, the restiNPREDICTABLE and the values in the
operand FPRs becorttNPREDICTABLE .

The result of ADDR.PS iNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

lower ~ ValueFPR(ft, PS) 31.0 + ValueFPR(ft, PS) 63..32
upper ~ ValueFPR(fs, PS) 31.0 * ValueFPR(fs, PS) 63..32
StoreFPR (fd, PS, upper || lower)

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Branch on Any of Two Floating Point Condition Codes False BC1ANY2F
31 26 25 21 20 18 17 16 15 0
COP1 BC1ANY2 cc tf
0 offset
010001 01001 xx0
6 5 3 11 16
Format: BC1ANY2F cc,offset MIPS-3D
Purpose:

To test two consecutive floating point condition codes and do a PC-relative conditonal branch

Description: If CCn+1 = 0 or CCn = 0, then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If either one of
the two FP condition code bits CC is false (0), the program branches to the effective target address after the instruc-
tion in the delay slot is executed.

The CC specified must align to 2, so bit 18 must always be zero. For example, specifying a value of 4 will check if
either one of Cg or CC, is 0 and branch accordingly. Specifying an illegally aligned CC will resuld MPRE-

DICTABLE behavior.

An FP condition code is set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Any Two Condition operation with (thee/false) as a
variables. The individual instructions BC1ANY2F and BC1ANY2T have a specific valuts for

I: condition ~ (FPConditionCode(cc) =0) or
(FPConditionCode(cc+1) = 0)

target_offset — (offset 15) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC ~ PC + target_offset
endif

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 29

Chapter 4 The MIPS-3D™ ASE Instruction Set

Branch on Any of Two Floating Point Condition Codes False, cont. BC1ANY2F

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

30 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Branch on Any of Two Floating Point Condition Codes True BC1ANY2T
31 26 25 21 20 18 17 16 15 0
COP1 BC1ANY2 cc nd| tf
offset
010001 01001 xx0
6 5 3 11 16
Format: BC1ANY2T cc,offset MIPS-3D
Purpose:

To test two consecutive FP condition codes and do a PC-relative conditonal branch

Description: If CCn+1 =1 or CCn = 1, then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If either one of
the two FP condition code bits CC is true (1), the program branches to the effective target address after the instruction
in the delay slot is executed.

The CC specified must align to 2, so bit 18 must always be zero. For example, specifying a value of 2 will check if
either one of Cgor CG; is 1 and branch accordingly. Specifying an illegally aligned CC will resuld MPRE-
DICTABLE behavior.

An FP condition code is set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation INPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Any Two Condition operation with (thee/false) as a
variables. The individual instructions BC1ANY2F and BC1ANY2T have a specific valuts for

I: condition ~ (FPConditionCode(cc) = 1) or
(FPConditionCode(cc+1) = 1)

target_offset — (offset 15) CPRLEN-(16+2) | offset || O 2
1+1: if condition then
PC ~ PC + target_offset
endif

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 31

Chapter 4 The MIPS-3D™ ASE Instruction Set

Branch on Any of Two Floating Point Condition Codes True, cont. BC1ANY2T

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

32 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Branch on Any of Four Floating Point Condition Codes False BC1ANY4F
31 26 25 21 20 18 17 16 15 0
COP1 BC1ANY4 cc nd| tf
offset
010001 01010 xx0
6 5 3 11 16
Format: BC1ANY4F cc,offset MIPS-3D
Purpose:

To test four consecutive FP condition codes and do a PC-relative conditonal branch

Description: If CCn+3 =0 or CCn+2 =0 or CCn+1 = 0 or CCn = 0, then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If any of the
four FP condition code bits CC is false (0), the program branches to the effective target address after the instruction in
the delay slot is executed.

The CC specified must align to 4, so bits 18 and 19 must always be zero. For example, specifying a value of O will
check if any one of Cg 5is 0 and branch accordingly. Specifying an illegally aligned CC will resuld MPRE-
DICTABLE behavior.

An FP condition code is set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Any Four Condition operation with(thee/false) as a
variables. The individual instructions BC1ANY4F and BC1ANY4T have a specific valuds for

I: condition ~ (FPConditionCode(cc) =0) or
(FPConditionCode(cc+1) = 0) or
(FPConditionCode(cc+2) = 0) or
(FPConditionCode(cc+3) = 0)

target_offset — (offset ;) CPRLEN-(16+2) | offset || O 2
I+1: if condition then
PC ~ PC + target_offset
endif

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 33

Chapter 4 The MIPS-3D™ ASE Instruction Set

Branch on Any of Four Floating Point Condition Codes False, cont. BC1ANY4F

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

34 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Branch on Any of Four Floating Point Condition Codes True BC1ANY4T
31 26 25 21 20 18 17 16 15 0
COP1 BC1ANY4 cc nd| tf
offset
010001 01010 xx0
6 5 3 11 16
Format: BC1ANYA4T cc,offset MIPS-3D
Purpose:

To test four consecutive FP condition codes and do a PC-relative conditonal branch

Description: If CCn+3 =1 or CCn+2 =1 or CCn+1 =1 or CCn = 1, then branch

An 18-bit signed offset (the 16-bdffsetfield shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If any of four
FP condition code bits CC is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed.

The CC specified must align to 4, so bits 18 and 19 must always be zero. For example, specifying a value of 4 will
check if any of the bits C& 4is 1 and branch accordingly. Specifying an illegally aligned CC will resuliNPRE-
DICTABLE behavior.

An FP condition code is set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Any Four Condition operation with(thee/false) as a
variables. The individual instructions BC1ANY4F and BC1ANY4T have a specific valuds for

I: condition ~ (FPConditionCode(cc) = 1) or
(FPConditionCode(cc+1) = 1) or
(FPConditionCode(cc+2) = 1) or
(FPConditionCode(cc+3) = 1)

target_offset — (offset ;) CPRLEN-(16+2) | offset || O 2
I+1: if condition then
PC ~ PC + target_offset
endif

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 35

Chapter 4 The MIPS-3D™ ASE Instruction Set

Branch on Any of Four Floating Point Condition Codes True, cont. BC1ANYAT

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangel8 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

36 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Floating Point Absolute Compare CABS.cond.fmt
31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0
COP1 A| FC
fmt ft fs cc 0 cond
010001 1| 11
6 5 5 5 3 1 1 2 4
Format: CABS.cond.S cc,fs,ft MIPS-3D
CABS.cond.D cc,fs,ft MIPS-3D
CABS.cond.PS cc,fs,ft MIPS-3D
Purpose:

To compare FP values and record the boolean result in one or more condition codes

Description: cc ~ fs compare_absolute_cond ft

The absolute value in FPRis compared to the absolute value in FRRhe values are in formdint. The compari-
son is exact and neither overflows nor underflows.

If the comparison specified ondis true for the operand values, the result is true; otherwise, the result is false. If no
exception is taken, the result is written into condition do@etrue is 1 and false is 0.

CABS.cond.PS compares the upper and lower halves offEBRd FPRft independently and writes the results into
condition codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of
the instruction iYNPREDICTABLE .

See the description of the C.cond.fmt instruction in Volume |l of this multi-volume set for a complete description of
the cond value and the behavior of the compare instruction.
Restrictions:

The fieldsfs andft must specify FPRs valid for operands of tyipg; if they are not valid, the result INPREDICT-
ABLE.

The operands must be values in fornfrat; if they are not, the result i§ENPREDICTABLE and the value of the
operand FPRs become®dPREDICTABLE .

The result of CABS.cond.PS BNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the
condition code number is odd.

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 37

Chapter 4 The MIPS-3D™ ASE Instruction Set

Floating Point Absolute Compare, cont. CABS.cond.fmt

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or
QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less false
equal false
unordered ~ true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond 3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then
SignalException(InvalidOperation)

endif
else
less AbsoluteValue(ValueFPR(fs, fmt)) < fmt
AbsoluteValue(ValueFPR(ft, fmt))
equal ~ AbsoluteValue(ValueFPR(fs, fmt)) = fmt

AbsoluteValue(ValueFPR(ft, fmt))
unordered - false
endif
condition —~ (cond 5 and less) or (cond 1 and equal)
or (cond g and unordered)
SetFPConditionCode(cc, condition)

For CABS.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as
an independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation

38 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Floating Point Convert Paired Single to Paired Word CVT.PW.PS
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.PW.PS
010001 10110 00000 100100
6 5 5 5 5 6
Format: CVT.PW.PSfd,fs MIPS-3D
Purpose:

To convert a FP paired-single value to a pair of 32-bit fixed point words

Description: fd.PU ~ convert_and_round(fs.PU); fd.PL ~ convert_and_round(fs.PL)

The values in FPRs, in formatPS,are converted to a pair of values in 32-bit word fixed point format and rounded
according to the current rounding modeRESR The result is placed in FPR. The conversions of the two halves
are done independently.

When either source value is Infinity, NaN, or rounds to an integer outside the raﬂge 211, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is sSEQSER#
the Invalid OperatiorEnablebit is set in theFCSR no result is written tdd and an Invalid Operation exception is

taken immediately. Otherwise, the default resutt-2, is written to the correspond half of FR&Rwhich caused the
exception.

Restrictions:

The fieldsfs andfd must specify valid FPRs+¥s for type PS andd for type PW. If they are not valid, the result is
UNPREDICTABLE . The format of the data in the specified operand registetust be a value in format PS; if it is
not, the result iISNPREDICTABLE and the value in the operand FPR becobiéBREDICTABLE .

The result of this instruction ISNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PW,
ConvertFmt(ValueFPR(fs, PS) 63.32 » S, W) |
ConvertFmt(ValueFPR(fs, PS) 31.0 » S, W)

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 39

Chapter 4 The MIPS-3D™ ASE Instruction Set

Floating Point Convert Paired Single to Paired Word (cont.) CVTPW.PS

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions
Unimplemented Operation, Invalid Operation, Overflow, Inexact

40 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Floating Point Convert Paired Word to Paired Single CVT.PS.PW
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.PS.PW
010001 10100 00000 100110
6 5 5 5 5 6
Format: CVT.PS.PW fd,fs MIPS-3D
Purpose:

To convert a pair of 32-bit fixed point words to FP paired-single value

Description: fd — (convert_and_round(fs 63.32) |l convert_and_round(fs 310)

The value in FPRSs, in formatPW,is converted to a value in paired-single floating point format and rounded accord-
ing to the current rounding modeRCSR The result is placed in FFR

Restrictions:

The fieldsfs andfd must specify valid FPRs+s for type PW andd for type PS. If they are not valid, the result is
UNPREDICTABLE . The operand in registés must be a value in format type PW; if it is not, the resutJINPRE-
DICTABLE and the value in the operand FPR becooBREDICTABLE .

The result of this instruction ISINPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS,
ConvertFmt(ValueFPR(fs, PW) 63.32 » W, S) II
ConvertFmt(ValueFPR(fs, PW) 31.0 » W, S)

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions
Unimplemented Operation

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 41

Chapter 4 The MIPS-3D™ ASE Instruction Set

Floating Point Reduction Multiply MULR.PS
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt MULR.PS
ft fs fd
010001 10110 011010
6 5 5 5 5 6
Format: MULR.PS fd, fs, ft MIPS-3D
Purpose:

42

To perform a reduction multiply on two paired-single floating point values

Description: fd.PL <- ft.PU * ft.PL; fd.PU <- fs.PU * fs.PL

The paired-single values in FHRare multiplied together and the result put in the lower paired-single position of FPR
fd. Similarly, the paired-single values in FHRare multiplied together and the result put in the upper paired-single
position of FPRfd. The two results are calculated to infinite precision and rounded by using the current rounding
mode iNFCSR The operands and result are values in format PS.

Any generated exceptions in the two independent adds are OR’ed todedlisebits are ORed into thElag bits if
no exception is taken.
Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of type PS. If they are not valid, the re&iNRPRE-
DICTABLE .

The operands must be values in format PS. If they are not, the restiNPREDICTABLE and the values in the
operand FPRs becorttNPREDICTABLE .

The result of ADDR.PS iNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

lower ~ ValueFPR(ft, PS) 31.0 X ValueFPR(it, PS) 63..32
upper ~ ValueFPR(fs, PS) 31.0 X ValueFPR(fs, PS) 63..32
StoreFPR (fd, PS, upper || lower)

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Floating Point Reduced Precision Reciprocal (Sequence Step 1) RECIP1.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RECIP1
fmt fs fd
010001 00000 011101
6 5 5 5 5 6
Format: RECIP1.S fd,fs MIPS-3D
RECIP1.D fd,fs MIPS_3D
RECIP1.PS fd,fs MIPS_3D
Purpose:

Generate a reduced-precision reciprocal of one or two FP values

Description: fd <- 1.0/ fs

The reciprocal of the value in FPRis approximated and placed in FFdR The operand and result are values in for-
mat S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. A minimum accuracy of 14 bits is recommended for the S input data format, and a
minimum accuracy of 23 bits is recommended for the D input data format.

Itis implementation dependent whether the result is affected by the current rounding nfZi8RIThis instruction

is meant to operate in RN (round to nearest) mode for the best accuracy. It is also meant to operate in the Flush to
Zero (FS=0) mode. In this mode, if the incoming data is in the denormalized range, it is assumed to be zero, and if the
output is in the denormalized range, it is forced to zero.

In addition, if the input to this instruction is zero, the output is not infinity, but the maximum normalized value. This
property is useful for 3D graphics applications. If the input is infinity, the output is zero.

This instruction is used as the first step of an instruction sequence that can be used to produce a full precision recipro-
cal value. See the description of RECIP2.fmt for an example of how to use this instruction in a code sequence to pro-
duce a full precision reciprocal result.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyfpet. If they are not valid, the result WNPRE-
DICTABLE . The format of the data in the specified operand regfsterust be a value in formdint, if it is not, the
result iSUNPREDICTABLE and the value of the operand FPR becodéRREDICTABLE .

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 43

Chapter 4 The MIPS-3D™ ASE Instruction Set

Floating Point Reduced Precision Reciprocal (Sequence Step 1, cont.) RECIP1.fmt
Operation:
StoreFPR(fd, fmt, (1.0 / ValueFPR(fs, fmt)) ReducedPrecision)
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow, Division-by-zero

44 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Floating Point Reduced Precision Reciprocal (Sequence Step 2) RECIP2.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RECIP2
fmt fs fd
010001 00000 011100
6 5 5 5 5 6
Format: RECIP2.S fd,fs,ft MIPS-3D
RECIP2.D fd,fs,ft MIPS-3D
RECIP2.PS fd,fs,ft MIPS-3D
Purpose:

Take the result of RECIP1.fmt and iterate towards obtaining a full precision reciprocal FP value

Description: fd <- iterate with fs and ft

This is the second step in the instruction sequence used to generate a full precision reciprocal result. (RECIP1.fmt
instruction is the first step). The operand and result are values in format S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard.

It is implementation dependent whether the result is affected by the current rounding nfZi8RIThis instruction

is meant to operate in RN (round to nearest) mode for the best accuracy. It is also meant to operate in the Flush to
Zero (FS=0) mode. In this mode, if the incoming data is in the denormalized range, it is assumed to be zero, and if the
output is in the denormalized range, it is forced to zero.

The example below shows how a full precision reciprocal result can be obtained using the RECIP1 and RECIP2
instructions. Assume that a value b is in register fO in format S. Assume that RECIP1.fmt produces a 16-bit result. At
the end of the three-instruction sequence shown below, register f3 contains the full precision 24-bit reciprocal 1/b.

RECIP1.S f1,f0 /* reduced precision 16-bit 1/b */
RECIP2.S f2,f1,f0 [*-(b*fl-1.0)*
MADD.S 3, f1, f1,f2 [* 24-bit 1/b */

The instruction sequence to produce a double, 52-bit result is as follows:

RECIP1.D f1,f0 [* reduced precision 16-bit 1/b */
RECIP2.D f2,f1,f0 [*-(b*fl-1.0)*

MADD.D 3, f1, f1,f2 [* 32-bit 1/b */

RECIP2.D f4,f3,f0 I*-(b *f3-1.0) %/

MADD.D f5, 13,13, f4 /*53-hit 1/b */
The instruction sequence to take a paired single value and produce a paired single result is as follows. Assume that
register fO holds two single values a and b in a paired single format, i.e.afpb.

RECIP1.PS f1, fO /* (reduced precision 16-bit 1/a and 1/b) */
RECIP2.PS f2,f1, fO /* (-(a*f1-1.0) and -(b*f1-1.0)) */
MADD.PS f3,f1,f1,f2 /*(24-bit L/aand 1/b) */

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 45

Chapter 4 The MIPS-3D™ ASE Instruction Set

Floating Point Reduced Precision Reciprocal (Sequence Step 2, cont.) RECIP2.fmt

If the hardware does not implement the RECIP1.PS instruction, it is still possible to obtain a paired single result, but
this takes three more instructions in the required sequence. Assume that register fO holds a single value a and register
f1 holds a single value b.

RECIP1.S f2,f0 /* (f2 gets reduced precision 1/a) */
RECIP1.S f{3,f1 /* (3 gets reduced precision 1/b) */
CVT.PS.S f4,f1,f0 /* (f4 now holds the PS values b | a) */
CVT.PS.S f5,f3,f2 I* (5 holds PS seed 1/b | 1/a)) */
RECIP2.PS f6, f5, f4 /* (6 holds intermediate 1/b | 1/a) */

MADD.PS f7,f5,15,f6 /* (f7 holds full precision PS 1/b | 1/a) */

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of tyfipat. If they are not valid, the result INPRE-
DICTABLE . The format of the data in the specified operand regfsteust be a value in formdint; if it is not, the
result iSUNPREDICTABLE and the value in the operand FPR becouBREDICTABLE .

The result of RECIP2.PS WNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
StoreFPR(fd, fmt, RECIP_iteration(ValueFPR(fs, fmt), ValueFPR(ft, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions
Unimplemented Operation, Inexact, Invalid Operation, Overflow, Underflow

46 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 1) RSQRT1.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RSQRT1
fmt fs fd
010001 00000 011110
6 5 5 5 5 6
Format:. RSQRT1.S fd,fs MIPS-3D
RSQRT1.D fd,fs MIPS-3D
RSQRT1.PS fd,fs MIPS-3D
Purpose:

To produce a reduced-precision reciprocal of the square root of one or two FP values

Description: fd <- 1.0 / sqrt (fs)

The reciprocal of the positive square root of the value in FPR fs is approximated and placed in FPR fd. The operand
and result are values in format S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. A minimum accuracy of 14 bits is recommended for the S input data format, and
23 bits for the D data format.

It is implementation dependent whether the result is affected by the current rounding RG&&Rin

In addition, if the input to this instruction is zero, the output is not infinity, but the maximum normalized value. This
property is useful for 3D graphics applications. If the input is infinity, the output is zero.

This instruction is used as the first step of an instruction sequence that can be used to produce a full precision recipro-
cal square root value. See the description of RSQRT2.fmt for an example of how to use this instruction in a code
sequence to produce a full precision reciprocal square root result.

Restrictions:

The fieldsfs andfd must specify FPRs valid for operands of tyjpet. If they are not valid, the result WNPRE-
DICTABLE . The format of the data in the specified operand regfsterust be a value in formdint, if it is not, the
result iSUNPREDICTABLE and the value in the operand FPR becouBREDICTABLE .

Operation:
StoreFPR(fd, fmt, (1.0 / SquareRoot(ValueFPR(fs, fmt))) ReducedPrecision)

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 47

Chapter 4 The MIPS-3D™ ASE Instruction Set

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 1, cont.) RSQRT1.fmt

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow, Division-by-zero

48 MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

4.1 MIPS-3D Instruction Descriptions

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 2) RSQRT2.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RSQRT2
fmt fs fd
010001 00000 011111
6 5 5 5 5 6

Format: RSQRT2.S fd, fs, ft MIPS-3D
RSQRT2.D fd, fs, ft MIPS-3D
RSQRT2.PS fd, fs, ft MIPS-3D

Purpose:

Iterate towards obtaining a full precision reciprocal square root FP value

Description: fd <- iterate with fs and ft

This is a step of iteration towards generating the full precision reciprocal square root value. The operand and result
are values in format S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard.

It is implementation dependent whether the result is affected by the current rounding RG&&Rin

A full precision reciprocal square root result is obtained by using the instruction sequence shown below. Assume that
a value b is in register fO in format S. Assume that RSQRT1.fmt has a 16-bit precision in the example implementa-
tion. At the end of the four-instruction sequence shown below, register f4 contains the full precision 24-bit reciprocal
square root 1/(sqrt)b.

RSQRTLS f1,f0 /* 16-bit 1/sqrt(b) */
MUL.S f2, f1, fO I*b* 0 *
RSQRT2.S f3,f2, f1 [%-(f1 * £2 - 1.0)/2 %/

MADD.S f4,f1,f1,3 /*24-bit 1/sqrt(b) */

The instruction sequence to produce a 52-bit result is as follows:

RSQRTL.D f1,f0 /* 16-bit 1/sqrt(b) */
MUL.D f2, 1, fO [* b * 0 */
RSQRT2.D f3,f2, f1 [* (1 * 2 - 1.0)/2 */
MADD.D 4, f1,f1,f3 /*31-bit 1/sqrt(b) */
MUL.D 5, fO, f4 I*b * 0 *
RSQRT2.D 16, f5, f4 [* -(f4 * 15 - 1.0)/2 */

MADD.D 7,4, 4,16 [*53-bit 1/sqrt(b) */

The instruction sequence to take a paired single value and produce a paired single result is as follows. Assume that
register fO holds two single values a and b in a paired single format, i.e.afpb.

RSQRT1.PS f1, f0 [* (16-bit 1/sqrt(a) and 1/sqrt(b)) */
MUL.PS f2, f1, fO F(a*foandb*f1)*
RSQRT2.PS f3, 2, f1 I* (~(f1*2-1.0)/2) */

MADD.PS f4,f1,f1,f3 /*(24-bit 1/sqrt(a) and 1/sqrt(b)) */

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11 49

Chapter 4 The MIPS-3D™ ASE Instruction Set

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 2, cont.) RSQRT2.fmt

50

If the hardware does not implement the RSQRT1.PS instruction, it is still possible to obtain a paired single result, but
this takes three more instructions in the required sequence. Assume that register fO holds a single value a and register
f1 holds a single value b.

RSQRT1.S f2,f0 /* (f2 gets reduced precision 1/sqrt(a)) */
RSQRT1.S f3,f1 /* (f3 gets reduced precision 1/sqrt(b)) */
CVT.PS.S f4,f1,f0 /* (f4 now holds the PS values b | a) */
CVT.PS.S f5,f13,12 I* (15 holds PS seed 1/sqrt(b) | 1/sqrt(a)) */
MUL.PS f6, f5, f4 /* (6 holds intermediatel results) */
RSQRT2.PS {7, 6, f5 [* (f7 holds intermediate2 results) */

MADD.PS 18, f5,f5,f7 /* ({8 holds full precision PS 1/sqrt(b) | */
/¥ 1/sqrt(a)) */
Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of tyfpet If they are not valid, the result iINPRE-
DICTABLE . The format of the data in the specified operand regfstetust be a value in formdit; if it is not, the
result SUNPREDICTABLE and the value of the operand FPR becobiéBREDICTABLE .

Operation:
StoreFPR(fd, fmt, RSQRT _iteration(ValueFPR(fs, fmt), ValueFPR(ft, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions
Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

Appendix A

Revision History

Revision Date Description
1.00 August 6, 1999 First external release
1.10 November 1, 2000 Convert format and include document in document set
1.11 March 12, 2001 ,rbécliedaasré:hitecture requirements and subsetting rules for next external review

MIPS64™ Architecture for Programmers Volume IV-c, Revision 1.11

51

	MIPS64™ Architecture for Programmers Volume IV-c: The MIPS-3D™ Application-Specific Extension to ...
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Guide to the Instruction Set
	2.1� Understanding the Instruction Fields
	2.1.1� Instruction Fields
	2.1.2� Instruction Descriptive Name and Mnemonic
	2.1.3� Format Field
	2.1.4� Purpose Field
	2.1.5� Description Field
	2.1.6� Restrictions Field
	2.1.7� Operation Field
	2.1.8� Exceptions Field
	2.1.9� Programming Notes and Implementation Notes Fields

	2.2� Operation Section Notation and Functions
	2.2.1� Instruction Execution Ordering
	2.2.2� Pseudocode Functions
	2.2.2.1� Coprocessor General Register Access Functions
	COP_LW
	COP_LD
	COP_SW
	COP_SD

	2.2.2.2� Load Memory and Store Memory Functions
	AddressTranslation
	LoadMemory
	StoreMemory
	Prefetch

	2.2.2.3� Access Functions for Floating Point Registers
	ValueFPR
	StoreFPR

	2.2.2.4� Miscellaneous Functions
	SyncOperation
	SignalException
	NullifyCurrentInstruction
	CoprocessorOperation
	JumpDelaySlot
	NotWordValue
	FPConditionCode
	SetFPConditionCode

	2.3� Op and Function Subfield Notation
	2.4� FPU Instructions

	MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture
	3.1� Base Architecture Requirements
	3.2� Software Detection of the ASE
	3.3� MIPS-3D Overview
	3.4� Instruction Bit Encoding

	The MIPS-3D™ ASE Instruction Set
	4.1� MIPS-3D Instruction Descriptions
	ADDR.PS
	BC1ANY2F
	BC1ANY2T
	BC1ANY
	BC1ANY4T
	CABS.cond.fmt
	CVT.P
	CVT.PS.PW
	MULR.PS
	RECIP
	RECIP2.fmt
	RSQ
	RSQRT2.fmt

	Revision History

