[image: image1.png]

PINP Is Not Pool!

Technical Manual for PS2 Billiards Project

Document Version 1.0
Jovanovic, Nemanja – 107473

Cochrane, Daniel – 107760

Hartley, Robert – 107648

Hoefel, Steven – 108981

Table Of Contents

4A.
Introduction

5B.
How it works

5Overview

6State Transition Diagram

7State transition Table

8Game Subsystems

8Rendering

11Physics

13Input

14MainLoop

15GameRules

16SoundSystem

17GameWorld

22C.
Enumerations

22CollisionType

22D.
Structures

22Bitmap

24E.
Overall Class Diagram

25F.
Class Descriptions

25Camera

26CNode

27CObject

28CollisionManager

29Credits

29Debugger

30GameManager

31GameRules

33GeomController

33HUD

34InputSystem

34joypadlilb

35Model

36ModelController

36Player

37PlayingBall

38PlayingSurface

38Pocket

38PoolRoom

39RenderManager

39SocketController

40SoundSystem

40TextureManager

41Utensil

42G.
Appendices

42Appendix A – Application Source Code

42Main Program

42CNode Class

42CObject Class

42PoolRoom Class

42PlayingSurface Class

42Pocket Class

42PlayingBall Class

42Utensil Class

42InputSystem Class

42SoundSystem Class

42Camera Class

42GameRules Class

42ModelController Class

42Model Class

42GeomController Class

42Debugger Class

42SocketController Class

42HUD Class

42Credits Class

42TextureManager Class

42RenderManager Class

42GameManager Class

42Player Class

43Appendix B – Third Party Product Information

43Sony PlayStation 2 Linux Development Kit

43SPS2

43KISS Renderer

43Open Dynamics Engine (ODE)

44Soundlib

44Joypadlib

A. Introduction

This document is designed to give the reader a detailed view of the structure of the PINP PlayStation 2 game. It will outline the basic program execution paths and then describe each class and how they are used together.

This document is intended for use by application developers and maintenance personnel. It is not intended to be a guide for application users.

B. How it works

Overview

The game is designed to be run on a PlayStation 2 utilising the Linux development kit. Certain software packages must be installed on the PS2 in order to run or continue development on the project. This includes the following:

SPS2Dev

SPS2Mod

KISS

ODE

IntMDLoader

State Transition Diagram

[image: image2]
State transition Table

	From State
	To State
	Reasons

	Init
	Intro
	Initialisation routines have completed, the program continues to the next state.

	Intro
	Main menu
	The Intro screen is displayed until the user presses the ‘Start’ button which allows the program to progress to the next state.

	Main Menu
	Aiming/Waiting
	A game is not in progress and a game type has been selected.

A game is in progress and the ‘Start’ button was pressed to get out of the menu.

	Main Menu
	Cue Animation

Ball Movement

Calculate Results

Show Final Results
	The ‘Start’ button was previously pressed whilst in one of the ‘To’ states. When returning from the Main Menu state, the program will return the game to the previous ‘To’ state and allow that state to finish its processing.

	Cue Animation

Ball Movement

Calculate Results

Show Final Results
	Main Menu
	The Main Menu can be accessed from any of the listed ‘From’ states. This will effectively pause the game, and the player will be returned to the ‘From’ State once leaving the Main Menu.

	Aiming/Waiting
	Cue Animation
	The player has released the shooting button, selecting the angle and force of their shot.

	Cue Animation
	Ball Movement
	The cue has finished moving away from the white ball and then back to it.

	Ball Movement
	Calculate Results
	All of the balls have decreased in velocity below the amount where they are considered to have stopped.

	Calculate Results
	Aiming/Waiting
	A ‘Turn’ is over once the balls have stopped moving and the Results have been calculated. The current player is then switched and the game is returned to the Aiming/Waiting state to let the next player take their turn.

	Main Menu
	Outro
	When exiting, the Outro sequence is displayed. From this point forward, the game can only exit.

	Outro
	Exit
	Once the user presses ‘Start’, the program progresses from the Outro state to the Exit State. In this exit state, all functions are shut down and the user is returned to the command prompt.

Game Subsystems

Rendering

Associated Classes: Model, ModelController, HUD, TextureManager, Credits, RenderManager

Associated Libraries: KISS, SPS2

The Rendering subsystem is responsible for the rendering of both 2D and 3D graphics.

3D Graphics

The 3D graphics are handled by the use of the KISS library. The KISS library is completely separate from the code written by the group. It is used through compile time linking to the “render.h” header file. It should be noted at this point that the KISS library is dependent upon another open source library, SPS2.

KISS uses the functionality of SPS2 and its other dependencies to provide us with access to the Vector units on the PS2, rendering of objects to the Graphics Synthesiser, copying textures to and from memory, loading models from disk, and more.

The KISS library has restrictions however. The position of the camera is fixed to look directly down the z-axis, and this cannot be changed. The viewing angle of the camera is also fixed. Any rendering must take these restrictions into account.

In order to render a scene correctly, objects must be moved and rotated to the desired positions relative to the fixed camera. This is done by manipulation of the worldtoscreen matrix passed to either the DrawModel function in the Model class or the Render_AddMatrix function if KISS is accessed directly.

The KISS renderer is set up solely to handle rendering model files that have been converted from the 3DS format using the open source program “IntMDLoader”. It cannot handle other formats. Each model loaded into the program is stored in a Model object, which encapsulates the functionality needed to load the model file from the hard disk and render it to screen using the KISS library. For reasons given below in the ModelController and TextureManager section, Model objects should not be created directly by the application. The ModelController class should be used to load 3D model files instead.

RenderManager and DMA Transfers

The KISS renderer has a limit on the size of the packets it can transfer to the Graphics Synthesizer (GS). This limit is hard coded, and cannot be changed without causing the KISS renderer to fail. This can result in the inability to display the required number of 3D models.

The RenderManager class was created to solve this problem. When used correctly, it allows for any number of models to be displayed. The correct operation of this class is as follows.

Instantiate the RenderManager object as normal.

After each 3D model is rendered using KISS, call the DrawingObject() function. If a sufficient amount of models have been rendered, this function will cause the current render chain used by KISS to be kicked to the GS using a DMA transfer, and the render chain will be cleared in preparation for the next model.

After the end of each frame, but before the call to sps2UscreenSwap(), call the FinishedFrame() function. This will cause KISS’s current render chain to be kicked to the GS using a DMA transfer in the same fashion as in the DrawingObject() function. This function needs to be called to ensure that any models rendered during the frame that have not already been kicked to the GS by the DrawingObject() function are transferred.

Delete the RenderManager object on program termination as normal.

The amount of models that are allowed to queue in the current render chain before being transferred to the GS is modifiable, and stored in the private maxObjects variable. If this value is set too high, the program will crash due to KISS overrunning its available space in the render chain. If this value is set too low, the additional DMA transfers will cause the application’s performance to degrade. The maxObjects value should be set as high as possible, but the exact setting depends on the quality and number of models used.

ModelController and TextureManager

These two classes are the resource managers for the rendering subsystem.

The ModelController class is responsible for the creation of all Model objects. No model objects should be created directly within the program, the LoadModel function should be called instead. It will load the requested model file if it has not already been loaded, and return a pointer to the Model object that was created. If the model file has already been loaded, then the pointer to the associated Model object is returned. This ensures that no model is loaded into memory more than once, saving on memory usage.

The TextureManager class is responsible for loading all bitmaps to be used as 2D textures for the HUD. Unlike ModelController, it does not prevent the same bitmap from being loaded more than once.

2D Graphics

The TextureManager class forms the backbone of the 2D graphics system. The class is responsible not only for the loading of textures from files, but also rendering the textures to screen. The DrawBitmap function is called to display textures, and handles the creation of the GIF packet and setting up the DMA transfer needed to display the text. This functionality is heavily dependent upon the SPS2 library.

Text display, used in the game’s introduction screen and credits screen, is accomplished through the use of the sps2Uprintf function as well as other related functions in the SPS2 library. Different fonts can be used, if they have been created and included in the project. The different fonts are created using SPS2, please refer to the SPS2 documentation for more information on this.

The HUD class is responsible for the initialization and display of all 2D graphics. It contains a list of all the textures to be loaded. What the HUD displays is dependent upon the current game state, as follows.

	Game state
	HUD display

	GAMESTATE_INTRO
	Introduction screen

	GAMESTATE_OUTRO
	Credits screen

	GAMESTATE_WAITING, GAMESTATE_PLAYING, GAMESTATE_ANIMATECUE
	Game scoreboard, current player status, player targets, PINP logo, power meter

	GAMESTATE_MENU
	As for the previous game state, plus the game menu. However, if the previous game state was GAMESTATE_INTRO, then the previous game state is treated as if it was GAMESTATE_WAITING to make the HUD display consistent with the 3D graphics.

	GAMESTATE_SHOWRESULTS
	Victory scoreboard, PINP logo, power meter

The Credits class is responsible for the loading of the credits from a text file and displaying them.

Layering Strategy

The layering strategy used in the game is simple. The 3D world is rendered first, background 2D graphics (such as the scoreboard, menu and logo) next, and finally the ‘icon’ type textures (such as the ball icons and number of turns left) are rendered on top. This strategy is followed for all game states except GAMESTATE_INTRO and GAMESTATE_OUTRO. While the game is in these states (the game introduction and credits), the 3D world is not rendered. It is simply not necessary in those states.

Physics

Associated Classes: GeomController, Main.cpp (file)

Associated Libraries: ODE (Open Dynamics Engine)

The Physics subsystem is responsible for the implementation of physics on the various objects in the game world. It does not have any classes of its own, and uses the open source ODE physics library/engine for all physics simulation.

As a result of this, the functionality of the Physics subsystem has been absorbed into the classes of the GameWorld subsystem, where those objects that require physics simulation simply call the necessary ODE functions directly.

Engine Time Steps
The ODE engine produces unpredictable results if the time value passed into the dWorldStep function is too high.
The collision detection functions are severely affected by varying time steps. If the time step is too large, the granularity of the detection algorithms becomes too large and leads to balls becoming stuck in the sides of the table. The power with which the player strikes the white ball during a shot is also affected by the time step.
The game uses a fixed time step value of 1/100th of a second to solve these problems. However, the physics engine is run once per frame during the main game loop. Using a fixed time step value when the execution of the physics engine is frame rate dependent is only possible because the program runs at a fixed 30fps while the physics engine is executing (see the Fixed Frame Rate section in the Main Loop subsystem). If the frame rate was not fixed, the simulation would appear to be distorted from the user’s viewpoint.
This implementation also requires that the forces involved when hitting the white ball are adjusted to produce the proper visual effect. Playtesting should be used to determine the adjusted forces.
Collision callback function

The dSpaceCollide function, called during the main loop, is responsible for detecting collisions between physics objects. A callback function is then called once for each collision detected. In the game, this function is nearCallback, located in the Main.cpp file.

The callback function is responsible for handling the effects of the collision. In the game, a collision is handled differently depending upon the in-game types of the objects colliding. For example, a collision between two balls is handled differently than a collision between a ball and a pocket. The function is also responsible for starting the playback of appropriate sound effects that correspond to the various types of collisions, via the SoundSystem subsystem.

Friction is implemented through the use of a velocity dampening function. The function takes the form of adding negative forces to the ball affected by friction, and the friction is triggered by a Ball/Table surface collision.

This collision callback function is included in the Main.cpp file due to the requirement that the function be located outside of a class. The ODE function that registers the callback function cannot accept a pointer to a function that is a class member function. The callback function can however be moved to another file, provided that file is included by Main.cpp and the function is kept outside of a class. If it is moved inside a class, it will not work.

GeomController

The GeomController class acts as a record of how dGeomID objects are related to the various Pocket, PlayingBall and PlayingSurface objects in the GameWorld subsystem. A record of the type of object is also kept.

This class is used as part of the collision detection and handling process. It is primarily used in the collision callback function (see the Collision callback function section above) to determine the type of the object involved in the collision based on its dGeomID. Without this class and the ability to determine the type of the object involved in the collision and extract a pointer to the related GameWorld object, it would not be possible to have different collision effects based on object type.

The GeomController class does not create dGeomID objects. The various objects in the GameWorld subsystem call upon the ODE engine to create these using any one of a number of dCreate* functions. There should be no duplicate dGeomID objects.

This class is intended to be used as follows:
Instantiate the class

While the program is running

When a new dGeomID object is created, call the AddGeom function to register the dGeomID and the associated GameWorld object and type

During the collision callback, call the GetGeomType and GetGeomObject functions to get the type of, or a pointer to, the related GameWorld object

On program termination, destroy the class

Input

Associated Classes: InputSystem

Associated Libraries: Joypadlib

The Input subsystem is responsible for receiving player input to the game and acting on that input to affect changes to the game world or state. The subsystem makes use of the joypadlib library to read the data from the PlayStation 2 controller. This is accomplished by using joypadlib to poll the controller and return the status of both the buttons and joysticks every time the CheckInput function is called. Interrupts are not used to receive input.

The game uses the controller in digital mode but button pressures are not used. The Input subsystem and joypadlib libraries cannot accept input from a non-standard PlayStation 2 controller (this includes the keyboard and mouse that come with the PlayStation 2 Linux kit), so the method of control for the game cannot be changed.

The Input subsystem is based around the function CheckInput in the InputSystem class. The CheckInput function processes the input received based on the current game state. The results of this input can be used to trigger changes and effects on various objects in the GameWorld subsystem, change the game state or affect the HUD. All of these effects are produced through the Input subsystem directly calling the required functions in the other subsystems. The CheckInput function can be called as often as desired to produce the required degree of user control. In the game, calling this function once per frame is sufficient, as it does not require a high level of responsiveness.

An unfortunate result of the InputSystem class’s requirements to have an effect on a large amount of other classes is that it is a tightly coupled class, and great care should be taken with any modifications made to either the InputSystem class or a class that it calls upon to prevent unwanted errors.

MainLoop

Associated Classes: None (Main.cpp)

Associated Libraries: ODE, SPS2, KISS

The MainLoop subsystem forms the skeleton around which the remainder of the game is built. It controls the execution of the game, and is responsible for bringing all the other subsystems together into a cohesive game.

The main Game Loop

The main game loop is not dissimilar to the main loops of most other games. Its basic structure is as follows:

Initialise SPS2

Initialise KISS renderer

Initialise ODE engine

Create and initialise required objects from each subsystem

Set initial game state to GAMESTATE_INTRO

Loop until game state == GAMESTATE_EXITING

{

Get player input and process it

Perform a physics simulation step, including collision detection and processing

Render world and HUD

Update sound playback

Swap buffers

}

Delete all created objects

Close ODE engine

Close KISS renderer

Close and release SPS2

Note that the physics simulations step is only performed if the game state equals GAMESTATE_PLAYING to save the CPU unnecessary work.

Collision callback function

For more information on this function, and why it is located in Main.cpp, see the Physics subsystem section.

Fixed Frame Rate

The PlayStation 2 requires that the program uses V-Sync. This cannot be changed.

The speed of the execution of the main game loop is primarily affected by whether the physics engine is running. The time required for gathering player input, rendering and sound playback is fairly constant.

As the main game loop is executed only once per frame and must wait for V-Sync before proceeding to restart the loop, this effectively locks the frame rate of the game.

The frame rate is normally 60 frames per second (fps). When the physics engine is running, it takes additional time to complete an iteration of the main game loop due to the CPU usage of the engine. The resulting frame rate when physics is running is only 30fps.

GameRules

Associated Classes: GameRules, GameManager, Player

The GameRules subsystem is responsible for enforcing the rules of the game on the objects within the GameWorld subsystem, and affecting the available options of the player based on game events.

The GameManager class

The GameManager class forms the backbone of this subsystem. It is solely responsible for implementing the rules set. The current rules set implemented for the game is the 8-ball variant of billiards.

During a game of 8-ball or a related game, the rules of the game apply at all times. For example, the ball that the white ball first comes into contact with first must be checked for a foul at that time, while determining which player has the next shot cannot be determined until the turn is complete and the events of the turn are examined. This requires that the GameManager class use a two-phase approach to enforcing game rules. The effect of the rules on the GameWorld objects is checked both while the turn is occurring, and once a turn has ended.

During the middle of a turn, when a collision occurs the appropriate ProcessCollision function should be called, based on the type of the collision. These functions ensure that any appropriate flags are set based on the collision, such as the foul flag. They also handle the removal of any balls that need to be removed from the table immediately, such as when the ball has been sunk.

Note that a ball entering a pocket is simply a BallPocket collision, and is handled like any other collision. The same philosophy applies to the ball leaving the table, which is a BallRoom collision.

At the end of a turn, the function EndTurn is called. This function determines which player has the next shot based on the flags set during the turn, and how many shots they have. It also replaces any balls on the table that need to be replaced (e.g. the white ball if it was sunk), and updates each player’s targets.

The GameRules class

The name of this class is not representative of its function within the game. Despite being named ‘GameRules’, this class does not implement any rules set. It is simply a repository of data that is used to initialize the objects and sound effects within the game.

The Player class

This class keeps track of the current target for the player, as well the number of shots the player has remaining before the other player gets to shoot.

Extensibility of the rules set

It is possible to changing the rules set that the game will use. To do this, a replacement GameManager class needs to be created that implements the same public interface that the existing GameManager class uses. The logic within the ProcessCollision and EndTurn functions can be replaced with the appropriate logic for the new game type. As long as the new game is similar in nature to 8-ball (e.g. snooker, or another variant of billiards), the rules can be successfully implemented. The existing two-phase approach to rules enforcement will likely not extend successfully into more exotic game types.

The GameManager class is an ideal candidate for being made into an abstract parent class such that all rules sets are derived from it. However, this has not been implemented.

SoundSystem

Associated Classes: SoundSystem

Associated Libraries: Soundlib

The SoundSystem subsystem is responsible for loading and playback of sound files. It uses the Soundlib library to provide this functionality. The SoundSystem class acts a wrapper around Soundlib, and exists solely to make usage of Soundlib easier.

At present, the subsystem does not work with any audio files that are not of the .wav format. This restriction is imposed by Soundlib, which can only handle .wav files by default. This can be changed, but it requires the installation of additional libraries and modifications to Soundlib to enable the functionality. Please see the Soundlib documentation for more details.

If additional types of audio files are enabled in Soundlib, this does not require that any changes be made to the SoundSystem class. The functionality of the SoundSystem class is independent of the format of the audio file.

The Update function in the SoundSystem class must be called regularly. This is a requirement of the Soundlib library, and the quality of the sound playback will degrade noticeably if this condition is not met. Please see the Soundlib documentation for the exact details.

GameWorld

Associated Classes: Camera, CNode, CObject, Utensil, PlayingBall, Pocket, PoolRoom, PlayingSurface

Associated Libraries: ODE

The GameWorld subsystem is responsible for holding all data relating to the objects in the game world, such as the playing balls, table and camera.

Tree Structure

Except for the Camera and Utensil objects, all objects in the GameWorld are placed into a tree structure at run time. This enables easy traversal of all objects in the game world, and is primarily used for rendering purposes. The tree structure is implemented via the CNode class.
Although derived from CObject, and therefore eligible to be placed in the tree structure, the objects of the Utensil class are not added to the tree. This is because the tree does not allow individual objects to be excluded from rendering.
The tree is structured so that each parent node knows only of its first child node, while all child nodes know of the parent node and their previous and next sibling nodes (at the same level). The recursive call that is used with this structure is to call the child node to perform an action, and then call the next sibling to perform that action.

As a result, if the Utensil object was made a child node of the PoolRoom object, as per the other objects, then it would be rendered when the PoolRoom was, even if that is not desired. The same problem would exist if the PoolRoom and Utensil objects were made children of a root ‘world’ node. Therefore, the Utensil object is not part of the tree structure.

The Camera class

The Camera object is used to track the location of the camera. However, due to the limitations of the KISS renderer (see the 3D Graphics section in the Rendering subsystem section), the camera position cannot be set based upon X,Y,Z coordinates.

The Camera class stores the following data:

The focal point of the camera, in X,Y,Z coordinates

The current angle of rotation around the y-axis

The current distance from the focal point

The Camera class then uses these to determine the correct worldtoscreen matrix for use with the KISS renderer, thereby achieving the effect of a movable camera. The MakeWorldToScreenMatrix function generates the generic matrix for use in rendering the world. The MakeCueMatrix function generates a matrix that is to be used when rendering the cue using the same data. It is not to be used for rendering the remaining objects in the game world.

The camera can also be locked (and unlocked) so that it cannot rotate freely using the RestrictCamera function. It is currently set so when the white ball is reset after being sunk, the angle of rotation around the y-axis is restricted between –90° and +90°, where 0° is the direction from the starting position of the white ball to the starting position of the black ball. As the camera class is used to determine the direction of a player’s shot, based on the current rotation around the y-axis, this functionality is used to implement the rule where a player can only shoot forward of the head string (see the User Manual for information about the head string).

The CObject class

The CObject class is the parent for most objects in the game world. It holds the data relating to the object’s position, its current state, and the 3D model (an object created from the Model class) that is used to represent it. The CObject class is derived from the CNode class to provide the tree functionality.
Although the CObject class contains a dBodyID object, it is not used by default. It needs to be instantiated by a derived class using the appropriate ODE function.

The 3D model used to represent the object is not the same model that is used in the ODE engine. The two are distinct, and do not share the same position data. The position stored in the CObject class is the position of the 3D model and is used for display purposes. It is for this reason that there are two functions provided to set the position; SetModelPosition sets the model’s position and SetPhysicalPosition sets the position of the object’s representation inside the ODE engine.

The DrawObject and Draw functions are used to display the object. DrawObject displays only the object it is called upon, while Draw displays the object it is called on and all descendants in the tree of GameWorld objects. Both functions call the protected OnDraw function to perform the display.

The OnDraw function will first update the position and rotation of the object’s 3D model to match the position and rotation of the object’s representation inside the ODE engine, if one exists. The 3D model is then displayed. The OnDraw function is implemented as a virtual function as derived classes may need to override the functionality present for special case rendering.

To move the object’s representation within the ODE engine, the AddForce function should be used in preference to the SetPhysicalPosition function.

The PoolRoom class

The PoolRoom class is responsible for creating and managing the GameWorld objects (except for the camera). The PoolRoom class does not have a 3D model or physics representation of its own, as it is primarily an interface that all other subsystems can use to manipulate the GameWorld objects. Except for those functions that return pointers to objects, the functions in this class should only be used at the end of a turn. They are not designed for use during a turn.

This class is quite tightly coupled with several other subsystems as a result. Any attempt to modify the class should be approached with care.

The PlayingBall, PlayingSurface and Pocket classes

These three classes are used to represent the majority of objects within the game world. Each class is responsible for the creation of the dGeomID objects that represent it within the ODE engine.

The PlayingBall class includes additional functionality to reflect that the playing balls are mobile objects. The UpdateVelocityStatus function is used to completely stop a ball, once its velocity is below a minimum threshold. This is required as the friction model used is based on percentages, and a velocity of zero will never actually be reached only using friction.

The PlayingSurface object contains a representation within the ODE engine of two distinct conceptual objects. The first of these objects is the billiard table itself. The second is a ‘ball rack’, and it is used to hold PlayingBall objects that have been removed from the table. It is located sufficiently far above the table such that the contents of the rack are not displayed when the world is rendered.

Respawning PlayingBall Objects

The reasoning behind the system used to respawn (replace) PlayingBall objects at the end of a turn is not immediately obvious.

The respawn boolean variable is the sole determiner of whether the ball is respawned at the end of turn. If this value is set to true, then the ball is respawned. However, once the ball has been respawned, that value is set to false automatically. This has the effect of making every ball start each turn with its respawn value set to false.

Every ball is assumed to automatically respawn if it participates in a BallRoom collision (is knocked off the table). In this situation, the function SetRespawnStatus(true) is called.

Each ball’s respawnFromPocket variable governs whether it is respawned after participating in a BallPocket collision (enters a pocket). It is not assumed that this is automatic – for example, the white ball respawns in the 8-ball game, whereas the coloured balls do not. This is implemented using code such as:

If(pBall->GetRespawnFromPocketStatus())

PBall->SetRespawnStatus(true)

It should be noted that after each ball has been initialized, the function SetRespawnStatus() should never be called with the parameter false. This will overwrite the effect of any event on that turn that would have caused the ball to respawn.

The Utensil class

The Utensil class represents the pool cue. It is also the only class with animation capabilities.

The utensil does not have a representation within the ODE engine. It only uses a 3D model so as to avoid problems involving inadvertent collisions arising from nearby balls or the table that a physics representation would produce.

In order to produce the ‘looking down the cue’ viewpoint, the Utensil object must point directly away from the player. Therefore, the DrawUtensil function must be used to display the Utensil object correctly and with animation, along with the special worldtoscreen matrix, as discussed in the Camera class section. The regular DrawObject or Draw functions can be used to display the Utensil object (with the special worldtoscreen matrix), but this will result in no animation.

The function SetMaxCueDistance is used to set the distance that the cue model pulls back during the process of taking a shot. This is measured in distance scale used for 3D models, not ODE representations.

The function SetAnimationLength sets the number of frames that the utensil takes to pull back during the animation. The function SetStrikeLength sets the number of frames that the utensil takes to strike the ball during animation from the pulled back position. These two functions are able to use the number of frames as the key to the animation instead of time due to the fixed frame rate of the game (see the Fixed Frame Rate section in the Main Loop subsystem).

To animate the cue, the following sequence of functions is used:
Initialise the Utensil object using the SetMaxCueDistance, SetStrikeLength and SetAnimationLength functions

Call the ResetAnimation function to reset the utensil to its starting position with regards to animation

Start the animation by calling the DoAnimationStep function

Until the AnimationIsComplete function returns true

Call the DoAnimationStep function

After an animation has finished, the animation can be repeated by returning to step 2.
C. Enumerations

CollisionType

enum CollisionType

{

BallBall
= 0,

BallRoom
= 1,

BallCushion
= 2,

BallPocket
= 3

};

This enumeration is used to specify the type of collision between two objects.

D. Structures

Bitmap

struct Bitmap

{

int iQWC;

Dn_CHCR_t chcr;

Dn_MADR_t madr;

sps2Memory_t *pMemCached;

char *pcMemory;

int w, h;

char *name;

bool loaded;

unsigned long texDmaMemNeeded, totalMemNeeded;
};

Member

Description

iQWC

Data used in uploading texture to the Graphics

Synthesizer (GS)

chcr

Data used in uploading texture to the Graphics

Synthesizer (GS)

madr

Data used in uploading texture to the Graphics

Synthesizer (GS)

pMemCached

Pointer to memory allocated by SPS2 to store

the bitmap data in

pcMemory

Pointer to the start of the memory where the

bitmap data is stored. This is pointer is offset from pMemCached, and reflects the actual storage location of the data within memory.

w

Width of the texture, in pixels

h

Height of the texture, in pixels

name

Name of the bitmap file used for this texture

loaded

Whether or not a texture has been loaded into

this structure

texDmaMemNeeded
Amount of memory required to hold the bitmap

data. This is equal to the smallest power of two (in kilobytes) that is larger than or equal to the size of the bitmap data, plus some additional fixed overheads.

totalMemNeeded

Total amount of memory needed to hold the

bitmap. Equal to texDmaMemNeeded + 4 kilobytes.

E. Overall Class Diagram

[image: image3.emf]Main()

InputSystem

SoundSystem

Camera

GameRules

ModelController

GeomController

Debugger

SocketController

RenderManager

HUD

Credits

TextureManager

GameManager

Player

Model

CNode

CObject

PoolRoom

PlayingSurface

Pocket

PlayingBall

Utensil

Inheritance

Figure 2
Each individual class is described in detail in the following segment.

F. Class Descriptions

Camera

Camera();

Constructor.

~Camera();

Destructor.

Mat44 MakeWorldToScreenMatrix(float centreX, float centreY, float centreZ);

Creates a transformation matrix for converting world coordinates to screen coordinates.

void RotateCamera(float dx, float dy, float dz);

Rotates the camera by the specified amounts in each of three directions.

void GetCameraVector(float resultVec[3]);

Returns a vector representing the direction the camera is facing.

float GetXRotation();

Returns the rotation of the camera about the X-axis.

float GetYRotation();

Returns the rotation of the camera about the Y-axis.

float GetZRotation();

Returns the rotation of the camera about the Z-axis.

float GetXOffset();

Returns the distance of the camera away from its focal point along the X-axis.

float GetYOffset();

Returns the distance of the camera away from its focal point along the Y-axis.

float GetZOffset();

Returns the distance of the camera away from its focal point along the Z-axis.

void Zoom(float amount);

Sets the amount the camera is zoomed in towards its focal point.

void ResetCamera();

Resets the camera to its initial location and orientation.

Mat44 MakeCueMatrix(float centreX, float centreY, float centreZ);

Creates a transformation matrix for converting the cue’s coordinates to screen coordinates.

void RestrictCamera(bool doRestrict);

Sets whether the camera rotation should be restricted.

void SetMaxAngle(float newMaxAngle);

Sets the maximum angle of the camera for when its rotation is restricted.

void SetMinAngle(float newMinAngle);

Sets the minimum angle of the camera for when its rotation is restricted.

void InitialiseVariables();

Initialises the camera’s location and orientation.

CNode

CNode();

Constructor.

CNode(CNode *node);

Constructor.

virtual ~CNode();

Destructor.

bool HasParent();

Returns whether the node has a parent node.

bool HasChild();

Returns whether the node has any child nodes.

bool IsFirstChild();

Returns whether the node is the first child of its parent node.

bool IsLastChild();

Returns whether the node is the last child of its parent node.

void AttachTo(CNode *newParent);

Attaches the node to a new parent node.

void Attach(CNode *newChild);

Attaches a new child node to the node.

void Detach();

Detach the node from its parent.

int CountNodes();

Return the number of nodes in the tree.

CObject

CObject();

Constructor.

CObject(char *modelName, ModelController *modelController, char* objName);

Constructor.

virtual ~CObject();

Destructor.

void SetModelPosition(float x, float y, float z);

Sets the position of the model in 3D space.

void SetPhysicalPosition(float x, float y, float z);

Sets the physical position of the object in 3D space.

void Draw(Mat44 worldtoscreen, lightinfo lights);

Notifies all of the siblings and children of the object to render themselves to the screen.

float GetXPos();

Returns the X position of the model.

float GetYPos();

Returns the Y position of the model.

float GetZPos();

Returns the Z position of the model.

void AddForce(dReal x, dReal y, dReal z);

Applies a force to the object in the specified 3D direction.

void StopMovement();

Stops all movement and rotation of the object.

dBodyID GetBodyID();

Returns the ID of the physics body that the object is linked with.

char* GetName();

Returns the name of the object.

void DrawObject(Mat44 worldtoscreen, lightinfo lights);

Calls the function OnDraw.

int GetObjectState();

Returns the current state of the object.

void SetObjectState(ObjectState newState);

Sets the current state of the object.

virtual void OnDraw(Mat44 worldtoscreen, lightinfo lights);

Renders the object to the screen.

void UpdateModelPosition();

Changes the model position based on the forces currently applied to the object.

void InitialiseVariables();

Initialises the object’s attributes.

enum ObjectState

{

ObjOnTable
= 0,

ObjOffTable
= 1,

ObjInPocket
= 2

};

This enumeration is used to keep track of an object’s state, with reference to the game, at any point in time.
CollisionManager

CollisionManager();

Constructor.

~CollisionManager();

Destructor.

bool CollidedLastFrame(dGeomID *o1, dGeomID *o2);

Returns whether the two objects collided during the last frame.

void AddCollision(dGeomID *o1, dGeomID *o2);

Stores a collision between the two objects for the current frame.

void StartNextFrame();

Starts the next frame.

Credits

Credits(char* creditsFile);

Constructor.

~Credits();

Destructor.

void ShowCredits();

Displays the credits on screen.

void LoadCreditsFile(char* fileName);

Loads the credits from the specified file.

void PrintCenteredString(char* str, sps2UFontStruct* font, int y);

Prints the specified string using the specified font at the specified vertical location, centred across the screen.

Debugger

Debugger();

Constructor.

~Debugger();

Destructor.

void TraverseTree(CObject* obj);

Visits each node of the tree starting at the specified object, sending the node’s details to the client.

void SetPoolRoom(PoolRoom *pr);

Stores a pointer to the specified PoolRoom.

void SetCamera(Camera *cam);

Stores a pointer to the specified Camera.

void SetGameRules(GameRules *gr);

Stores a pointer to the specified GameRules.

void Post(char msg[BUFLEN]);

Sends the specified message to the client.

void PostData(char msg[BUFLEN]);

Sends the specified piece of data to the client.

void UpdateAll();

Sends all of the game data to the client.

bool OhPlease();

Returns whether the game should continue running.

GameManager

GameManager(GameRules *rulesSet, PoolRoom *room, Camera *cam);

Constructor.

~GameManager();

Destructor.

void ProcessCollision(PlayingBall *pBall1, PlayingBall *pBall2);

Processes the collision between the specified balls to determine the state of gameplay.

void ProcessCollision(PlayingBall *pBall, CollisionType cType);

Processes the collision between the specified ball and object to determine the state of gameplay.

void EndTurn();

Ends the current turn.

bool IsGameOver();

Returns whether the game is over.

Player* GetPlayer(int playerNum);

Returns a pointer to the specified player.

Player* GetCurrentPlayer();

Returns a pointer to the player whose turn it is.

Player* GetWinner();

Returns a pointer to the player who won the game.

Player* GetLoser();

Returns a pointer to the player who lost the game.

void StartNewGame();

Resets all of the variables to their initial values.

char* GetFirstBallHitStatus();

Returns a string designating whether the first ball for the turn has been hit.

char* GetFoulFlagStatus();

Returns a string designating whether a foul has occurred this turn.

char* GetContinueFlagStatus();

Returns a string designating whether the current player still has another shot.

bool AllOfTypeSunk(int ballType);

Returns whether all balls of the specified type have been sunk.

void CheckFoulContinueFlags();

Sets which player will shoot next.

void SwapPlayer(int numTurns);

Swaps players and gives the new player the specified number of turns.

GameRules

GameRules();

Constructor.

~GameRules();

Destructor.

int GetNumberBalls();

Returns the number of balls in the game.

char* GetSurfaceModel();

Returns the filename of the model used for the playing surface.

char* GetUtensilModel();

Returns the filename of the model used for the utensil.

float GetBallX(int ball);

Returns the X position of the specified ball.

float GetBallY(int ball);

Returns the Y position of the specified ball.

float GetBallZ(int ball);

Returns the Z position of the specified ball.

int GetNumberPockets();

Returns the number of pockets in the game.

float GetPocketX(int pocket);

Returns the X position of the specified pocket.

float GetPocketY(int pocket);

Returns the Y position of the specified pocket.

float GetPocketZ(int pocket);

Returns the Z position of the specified pocket.

char* GetBallModel(int ball);

Returns the filename of the model used for the specified ball.

float GetBallSize(int ball);

Returns the radius of the specified ball.

float GetBallMass(int ball);

Returns the mass of the specified ball.

char* GetBallName(int ball);

Returns the name of the specified ball.

char* GetPocketName(int pocket);

Returns the name of the specified pocket.

float GetPocketRadius(int pocket);

Returns the radius of the specified pocket.

int GetBallType(int ball);

Returns the type of the specified ball.

float GetRemovalOffset();

Returns the offset that needs to be applied to the ball locations when they are removed from play.

int GetOppositeType(int type);

Returns the type opposite to the specified type.

void LoadSounds(SoundSystem* soundSystem);

Loads all of the sounds into the specified SoundSystem.

int GetSound(SoundType sType);

Returns the sound for the specified type of event.

enum SoundType

{

Music

= 0,

BallBall
= 1,

BallRoom
= 2,

BallCushion
= 3,

BallPocket
= 4,

CueBall
= 5

};

This enumeration is used to specify the type of sound effect to be played.

GeomController

GeomController();

Constructor.

~GeomController();

Destructor.

char* GetGeomType(dGeomID geom);

Returns the type of the specified piece of geometry.

void* GetGeomObject(dGeomID geom);

Returns a pointer to the specified piece of geometry.

void AddGeom(dGeomID geom, char* type, void* objRef);

Adds a new piece of geometry with the specified ID and type, referencing the specified object.

void RemoveGeom(dGeomID geom);

Removes the specified piece of geometry.

HUD

HUD(TextureManager *t, GameManager *ptrGameManager, int sps2d);

Constructor.

~HUD();

Destructor.

void drawHUD(int gamestate);

Renders the HUD that should be displayed during the specified gamestate.

void drawMenu();

Renders the menu.

void changeMenuItem(int dir);

Moves the menu selection in the specified direction. -1 for up, +1 for down.

int getCurrentSelection();

Returns the position of the currently selected menu item.

void setShootingForce(float force);

Sets the shooting force to the specified value.

void setMaxForce(float maxForce);

Sets the maximum shooting force to the specified value.

void DrawTargetGroup(int targetGroup, int x, int y);

Draw an icon for the specified ball group at the specified location.

void DrawPowerMeter(int x, int y, float shotStrength);

Draws the power meter at the specified location, indicating the specified shot strength.

void DrawQuad(int x, int y, int w, int h, int z);

Draws a red filled quad at the specified location.

int loadTriangleData(void *pvBase, int x, int y, int w, int h, int z);

Converts the data from DrawQuad into triangle vertices.

InputSystem

InputSystem(PoolRoom *ptrPoolRoom, Camera *ptrCamera, SoundSystem *ptrSoundSystem, GameRules *ptrGameRules, HUD *ptrHUD, GameManager *ptrGameManager);

Constructor.

~InputSystem();

Destructor.

void CheckInput(int &gamestate);

Processes input for the specified gamestate.

float getShootingForce();

Returns the shooting force.

joypadlilb

void joypadlib_initialize(void);

Initialise the joypad.

void joypadlib_shutdown(void);

Shutdown the joypad.

int joypadlib_num_supported_joypads(void);

Return the number of joypads.

void joypadlib_update(void);

Poll the joypad.

unsigned long joypadlib_get_joypad_buttons(int joypad,

void* button_pressures, int type);

Returns the state of the joypad buttons.

void joypadlib_get_joypad_sticks(int joypad, float left_stick[2], float right_stick[2]);

Returns the state of the analogue sticks.

int joypadlib_joypad_supports_pressure(int joypad);

Returns whether the joypad supports pressure sensitivity.

int joypadlib_get_joypad_status(int joypad);

Returns the status of the joypad.

int joypadlib_get_joypad_type(int joypad);

Returns the type of joypad.

int joypadlib_get_joypad_num_modes(int joypad);

Returns the number of modes that the joypad can be in.

int joypadlib_get_joypad_mode(int joypad, int mode_index);

Returns the mode of the specified joypad.

int joypadlib_set_joypad_mode(int joypad, int mode, int lock_unlock);

Sets the mode of the specified joypad.

int joypadlib_get_joypad_num_actuators(int joypad);

Returns the number of actuators the joypad has.

void joypadlib_enable_joypad_actuators(int joypad, int enable_small, int enable_big);

Enables the joypad actuators.

void joypadlib_set_joypad_actuators(int joypad, unsigned char small_intensity,unsigned char big_intensity);

Sets the intensity of the actuators.

Model

Model(RenderManager* ptrRMgr);

Constructor.

~Model();

Destructor.

void LoadModel(char* modelName);

Loads the model from the specified file.

void DrawModel(Mat44 &rotation, Mat44 &worldtoscreen, lightinfo &lights);

Renders the specified model.

void DrawModel(Mat44 &rotation, Mat44 &worldtoscreen, lightinfo &lights, bool kickFrame);

Renders the specified model and sends the current frame off to the VU.

int LoadObjects(CSceneCreatorIntmd scenecreatorobject, void *meshpointers[],void *texturepointers[], Mat44 transforms[]);

Loads the meshes and textures of the model.

ModelController

ModelController(RenderManager *ptrRMgr);

Constructor.

~ModelController();

Destructor.

Model* LoadModel(char* modelName);

Load the model if it has not already been loaded.

int ModelLoaded(char * name);

Check if the specified model has been loaded.

Model *GetModelPointer(int x);

Returns a pointer to the xth model.

void AddModel(Model *model, char * name);

Adds the specified model.

Player

Player();

Constructor.

Player(char* playerName, int playerNo);

Constructor.

~Player();

Destructor.

void SetName(char *newName);

Sets the name of the player.

char* GetName();

Returns the name of the player.

void SetNumberOfTurns(int numTurns);

Sets the number of turns the player has left.

void ChangeNumberOfTurns(int deltaTurns);

Changes the number of turns the player has left by the specified amount.

int GetNumberOfTurnsLeft();

Returns the number of turns the player has left.

int GetTargetType();

Returns the ball type that the player is targeting.

void SetTargetType(int newTargetType);

Sets the ball type that the player is targeting.

void ResetPlayer();

Resets the variables of the player.

int GetPlayerNumber();

Returns the number of the player.

PlayingBall

PlayingBall(dWorldID world, dSpaceID space, ModelController *modelController, GeomController *geomController, float ballSize, float ballMass, char* modelName, int ballNo, char* ballName, int type);

Constructor

~PlayingBall();

Destructor

bool IsStopped();

Returns whether this object’s velocity equals zero.

void UpdateVelocityStatus();

Determines whether the object’s velocity has fallen beneath the minimum velocity threshold, and sets the objects velocity to zero if it has.

int GetBallType();

Returns the type of this PlayingBall (e.g. BALL_WHITE, BALL_BIG, etc.)

void SetRespawnStatus(bool rStatus);

Sets whether the ball should be respawned back onto the table at the end of the turn.

bool GetRespawnFromPocketStatus();

Returns whether the ball should be respawned after colliding (entering) a pocket.

void SetRespawnFromPocketStatus(bool rStatus);

Sets whether the ball should be respawned after colliding (entering) a pocket.

void Respawn();

Respawn the ball back onto the table, at its original position and with zero velocity.

void RemoveFromTable();

Remove the ball from the table.

void SetRespawnCoords(float x, float y, float z);

Sets the world coordinates where the ball should be spawned when spawning on the table.

void SetRemovalCoords(float x, float y, float z);

Sets the world coordinates where the ball should be moved to when removing the ball from the table.

PlayingSurface

PlayingSurface(dSpaceID space, ModelController *modelController, GeomController *geomController, char *modelName);

Constructor

~PlayingSurface();

Destructor

Pocket

Pocket(float xpos, float ypos, float zpos, float radius, dSpaceID space, GeomController *geomController, char* pocketName);

Constructor

~Pocket();

Destructor

PoolRoom

PoolRoom(GameRules *rules, dWorldID world, dSpaceID space, ModelController *modelController, GeomController *geomController);

Constructor

~PoolRoom();

Destructor

void DrawUtensil(Mat44 worldtoscreen, lightinfo lights);

Draw the utensil.

void ResetBallPositions();

Reset the positions of all balls to their original on-table positions and set their velocities to zero.

PlayingBall* GetWhiteBall();

Return a pointer to the PlayingBall object representing the white ball.

void UpdateBallVelocities();

Update the velocity status of each ball.

bool AllBallsStopped();

Returns whether all balls have a velocity of zero.

PlayingSurface* GetPlayingSurface();

Returns a pointer to the PlayingSurface object.

void RespawnBalls();

Respawn each ball.

PlayingBall* GetPlayingBall(int ballNo);

Returns a pointer to the PlayingBall object requested.

void ResetAllBalls();

Set each PlayingBall’s respawn status to true and respawn each ball.

Utensil* GetUtensil();

Return the pointer to the Utensil object.

RenderManager

RenderManager(int iSps2descriptor);

Constructor

~RenderManager();

Destructor

void DrawingObject();

This function should be called after each 3D model has been displayed. It kicks the data from the KISS renderer to the Graphics Synthesizer (GS) after the specified number of models have been rendered.

void FinishedFrame();

This function should be called at the end of the render loop. It kicks any remaining models that have been rendered to the GS.

SocketController

SocketController();

Constructor

~SocketController();

Destructor

int SendMessage(char msg[BUFLEN]);

Send a message to the connected PC.

int CheckMessages(char msg[BUFLEN]);

Poll the TCP socket and get any messages from the connected PC.

void CloseConnection();

Close the TCP connection to the PC.

void SetNonBlocking(int sock);

Set the specified socket to be non-blocking.

SoundSystem

SoundSystem();

Constructor

~SoundSystem();

Destructor

void PlaySound(int soundID);

Begin playback of the sound specified. This will restart playback if the sound is already playing.

void PlaySound(int soundID, float volume);

Begin playback of the sound specified at the volume specified. This will restart playback if the sound is already playing.

int LoadSound(char* fileName);

Load a sound into memory from the file specified. The file must in the wav format.

void Update();

Continue the playback of sounds. If this function is not called rapidly enough (approximately 45 times per second), the sound quality will noticeably degrade.

void ToggleMusic(int musicID);

Toggle the playback status of the sound specified (i.e. if it is playing, stop it; if it is not playing, start playback).

TextureManager

TextureManager(int sps2d);

Constructor

~TextureManager();

Destructor

bool LoadFile(char* fileName, bool trans);

Load a bitmap file for use as a texture in the 2 dimensional HUD, with or without transparency. Returns whether the load was successful.

void DrawBitmap(char* fileName, int x, int y, int z);

Draw the texture with the given file name to the screen at the specified coordinates. The texture must be loaded using LoadFile() first or this function has no effect.

void DeleteBitmap(char* fileName);

Delete the specified texture from memory.

int BuildGSPacket(void* pMem, int x, int y, int w, int h, int z);

Build a packet to send to the Graphics Synthesizer, displaying the texture data stored at pMem, with the given height and width, at given coordinates.

Utensil

Utensil(dSpaceID space, ModelController *modelController, GeomController *geomController, char *modelName);

Constructor

~Utensil();

Destructor

void DrawUtensil(Mat44 worldtoscreen, lightinfo lights, float rotationAngle, float centreX, float centreY, float centreZ);

Renders the utensil to the screen, given the viewing focal point of the user and the rotation of the utensil around that point.

void SetMaxCueDistance(float newMaxDistance);

Sets the maximum distance the utensil is moved back during the animation sequence.

void SetAnimationLength(int lenInFrames);

Sets the length of time, in frames, that the utensil takes to be pulled back during the animation sequence.

void SetStrikeLength(int lenInFrames);

Sets the length of time, in frames, that the utensil takes to strike the ball after being pulled back.

void ResetAnimation();

Reset the utensil position back to the initial position before animation.

bool AnimationIsComplete();

Returns whether the animation sequence has finished, or is not running.

void DoAnimationStep();

Causes the utensil to take a step in the animation sequence. If the utensil was not previously running its animation sequence, this function is used to start the sequence. Also, this function automatically terminates the animation if the animation finishes.

G. Appendices

Appendix A – Application Source Code

Main Program

CNode Class

CObject Class

PoolRoom Class

PlayingSurface Class

Pocket Class

PlayingBall Class

Utensil Class

InputSystem Class

SoundSystem Class

Camera Class

GameRules Class

ModelController Class

Model Class

GeomController Class

Debugger Class

SocketController Class

HUD Class

Credits Class

TextureManager Class

RenderManager Class

GameManager Class

Player Class

Appendix B – Third Party Product Information

Sony PlayStation 2 Linux Development Kit

See http://www.us.playstation.com/peripherals.aspx?id=SCPH-97047
Also http://playstation2-linux.com/
SPS2

See http://playstation2-linux.com/projects/sps2
From the website:
“The sps2 project is home to utilities that seek to maximize direct access to the PS2 hardware -- the DMAC, the VUs and the EE/GS registers -- within the linux kernel. The approach taken by sps2 is one that requires no kernel modification (other than loading a kernel module) and does not permanently reserve any portion of the memory for DMA access at boot time. This project is home to the module, the support libraries, and sample applications that use it. A possible long-term goal for the project is to create an environment such that the same code can be compiled and run either within the linux kernel or directly on the RTE, hopefully maximizing the similarity between linux-based development and low-level development.”
KISS Renderer

See http://playstation2-linux.com/projects/render/
From the website:
“The KISS (Keep It Simple, Stupid) renderer is a basic Path 1 rendering library built on top of SPS2 and intmdloader. It supports backface culling, trivial clipping and a simple parallel/ambient lighting model. A set of functions are supplied for uploading VU1 microcode, geometry and texture data. The library could be used as the basis for a game engine, or as sample code when developing your own renderer.”
Open Dynamics Engine (ODE)

See http://www.ode.org/
From the website:
“ODE is an open source, high performance library for simulating rigid body dynamics. It is fully featured, stable, mature and platform independent with an easy to use C/C++ API. It has advanced joint types and integrated collision detection with friction. ODE is useful for simulating vehicles, objects in virtual reality environments and virtual creatures. It is currently used in many computer games, 3D authoring tools and simulation tools.”
Soundlib
See http://playstation2-linux.com/projects/soundlib/
From the website:
“This library provides a set of functions that allow for mixing and output of sound on the Playstation 2 Linux platform. Among the features provided by this library are: -Built-in support for WAV, MP3, and OGG sound formats. -Streaming from memory (for higher performance) or disk (for reduced memory usage). -User-defined "callback" sounds. -Hooks for post-processing on individual sounds as well as device buffers. -3D sound processing. -Changeable volume and playback rate for sounds. -8 sample programs demonstrating features of the library. -It's free. The source code is yours to do whatever you'd like. -And more.....”

Joypadlib

See http://playstation2-linux.com/projects/joypadlib/
From the website:

“The standard joystick interface exposed through Linux, which is used by the samples included with PS2 Linux, is inadequate for accessing all the features of the newer Playstation joypads. Among the things you can't do with the standard Linux joystick interface are: -Read the analog sticks -Read the pressures on the "digital" buttons -Set the joypad vibration To address these shortcomings you could open up the devices directly in your own program and access and use ioctl commands. The problems with this approach are many: -ioctl calls are ugly -The format of joypad data isn't very well documented -Accessing the raw data returned from the devices is cumbersome and error prone The joypadlib library hides most of the ugliness and complexity of accessing the joypads, which will hopefully give anybody using this library more time to create games.”

Outro

Main Menu

Aiming/Waiting

Cue Animation

Ball Movement

Show Final Results

Init

Calculate Results

Intro

Exit

Game Play

Figure 1

