Creating VUniverse

Mike Day 2003

Several people at the 2003 DevCon (and subsequently) have asked me questions about how VUniverse was made, and so I promised to write a few notes to accompany the source code. Here I've jotted down some of the approaches I used to create the various elements. Several of the techniques were routine (e.g. procedural spheres) but others were a lot more challenging (the terrain, the water) as was the integration of all the 'sub-demos' into one seemless fly-through in the final stages of the project.

The work was done in my spare time at home, and in a fairly low-tech way – using only a debug unit running the ATMON software. I didn't have any VU debugging capabilities – if the program crashed, I just stared at the source code for a while and scratched my head... a method which appealed to my old-school side. One of the trickier parts – for me – was creating a custom version of the demo harness for the ATMON/debug unit environment. I never did succeed in getting this to run totally bug-free and it was always a bit flaky, so perhaps next year we might see an official version for debug units on the ps2-pro site. (Kirk? :-)

Textures

At startup, a collection of predefined 16-colour palettes and small full-colour textures are placed in VRAM using image-mode transfers. This frees up some VUMem for run-time use.

There is a pause as the demo begins. During this time a procedural noise texture is being generated behind the scenes – it is 1024 x 1024 x 4bit; you'll see it cropping up in many different guises throughout the demo, and this is what most of the 16-colour palettes are for. The choice of a 4-bit texture was primarily to conserve VRAM, but it also allows the use of multiple explicit palettes since each full palette of 32-bit entries only occupies 4 quadwords in VUMem plus overheads for transferring it. (Obviously it occupies no VUMem space once it has been transferred.) Although a 4-bit frame buffer isn't directly supported, with a bit of work you can simulate one by setting up a 16-bit frame buffer (since 4-bit and 16-bit textures have the same block layout) and then access it using some bit-twiddling on the coordinates together with frame buffer masking to make sure you write the correct 4 of the 16 bits with each pixel write. This is how the generated texture is able to be 4-bit.

The algorithm used to generate it is recursive midpoint subdivision, where the recursive step subdivides a square region of the texture into 4 quadrants. To start, the texture is assigned an initial value at each corner of the square. Each edge is subdivided at its midpoint, and the interpolated value perturbed by a random amount. Once these 4 midpoint values are generated (the 'diamond step'), they are averaged to produce a value for the middle of the square, then a final perturbation is applied to this value. This procedure is repeated recursively on each of the 4 sub-squares, until we reach the level of a single pixel. The method of selecting random numbers requires a bit of thought, because many of the subdivision points will be revisited when an adjacent region is processed, and we must ensure we use the same random number on each such visit. (See the terrain notes below for an explanation of the method used, since the terrain is created in a somewhat similar fashion.)

Galaxy

Not perhaps the most convincing effect, and not too much like the Hubble Space Telescope picture which inspired it, but it was created in a bit of a hurry. A mesh is generated as a set of concentric tri-stripped rings, forming a disc. The generated noise texture is tiled both around the disc and radially, with a twist applied from ring to ring by adding a constant increment to the starting value of one of the texture coordinates – creating a spiral effect. This is modulated by vertex colours which fade from a high-alpha yellow near the centre to a zero-alpha purple at the outer rim. The effect is completed by superimposing glowing galactic nucleus drawn as a circular blobby sprite, using a surprisingly low resolution texture – 8x8, would you believe. (Actually the same sprite is used for the stars.)

Stars

The random number unit is used to spread stars over the interior of a cube. (Yes, I actually used the random number unit to generate random numbers!) If you've ever tried running a loop containing three RNEXT instructions in a row, with the aim of creating a nice cloud of random 3D points inside a cube, you were probably either disappointed with the result or else thought (like I did) that it was a bug, that instead of getting a random cloud you got 16 parallel straight lines of points. It wasn't your bug; this is what really happens because RNEXT by itself is a rather non-random random number generator. But if combined with the RXOR instruction and a short history of previous random numbers (e.g. the 3 most recently generated numbers), you can do much better. (Thanks to Ryan McMahon for this tip.) Here's what I use to create the random vectors used for the star positions:

	RXOR		R,VF13x

	RNEXT.x	VF13,R

	RXOR		R,VF13y

	RNEXT.y	VF13,R

	RXOR		R,VF13z

	RNEXT.z	VF13,R		; Simple, but quite effective!

It also saves precious upper instruction slots.

A trick is used to give the illusion of moving through a very large array of stars, whereas in truth only a small region around the camera is populated with stars. To achieve this effect, the random star positions are translated relative to the camera, but only the fractional parts of the resulting cameral-space coordinates are kept. A scale-and-offset then spreads the points in a cube around the camera.

Another, more messy and complicated trick is used to simulate the increasing density of stars as the galactic plane is approached. The absolute value of the distance to the plane is used to control the number of stars drawn – but there's a little more to it, because if you simply change the truncation position of the sequence of stars, some of the stars you just added or removed can be close to the camera, causing stars to pop in or out. To mask the discontinuity, stars are also drawn with an alpha value that depends on the position in the sequence. Stars drawn first have the highest alpha, whereas those drawn last (which have either just been introduced into the picture or are just about to vanish) are drawn at zero alpha. A linear falloff creates a gradual fade-in and fade-out as the camera moves through the galaxy.

Sun

The Sun is merely a circular sprite. The more interesting part however is the corona or bloom effect, which dims when the Sun is partially obscured. To create this effect, the Sun sprite contains an alpha channel representing a mask for the Sun's shape (with antialiased edge pixels). The Sun is drawn into a framebuffer with a completely clear alpha channel, as anything else drawn since the screen-clear will have been drawin with alpha-write masked. Anything subsequently drawn in front of the Sun as the frame is composed, such as a mountain or a planet, will clear the alpha channel on the pixels it touches, leaving non-zero alpha only in those pixels of the Sun that remain visible. This region around the Sun is grabbed into a small buffer in VRAM and downsampled by a few factors of two, with bilinear filtering applied, reducing it to a single pixel whose alpha value now represents how bright the corona should be drawn.

The corona itself is a circular fan with a bright centre and somewhat random colours (and zero vertex alpha) around the edge. The trick to making it correctly respond to the downsampled alpha value, using a GS-only solution (remember a VU1 demo is a one-way journey – you can't read anything back from VRAM) is to have the fan primitive be textured, and send a single pair of texture coordinates that access the downsampled texel created earlier – the alpha channel of this texel modulates the whole corona.

Saturn

This is my little tribute to Jim Blinn – it's intended to be reminiscent of his ground-braking Voyager flyby animations. To obtain a degree of authenticity, I browsed the JPL website for some Saturn facts – the amount of flattening at the poles, the sizes of the various rings, and the overall appearance of the cloud belts (whose colour I exaggerated somewhat). This is one of the few pieces of code I didn't get round to optimising, so it might still be at least somewhat readable.

The sphere (or spheroid) is actually created as a single triangle strip running from pole to pole, making a complete circuit at each latitude before stepping to the next. Its one-dimensional texture occupies all of 16 bytes! (32 x 1 x 4-bit). To light the planet I used simple ambient and diffuse shading, but I decided to spice this up a little after seeing a photograph of Saturn in which the outer edge of the planet aquired a bluish tint, perhaps due to the oblique angle of view. This may have been a false-colour image, but I thought it looked nice, so in an attempt to emulate it I also apply some blue fogging to the outer edge.

The ring geometry is nothing special – just an annulus made of triangle strips. The texture draws on JPL's image database to roughly model features such as the Cassini division. To give the rings extra realism, I simulated the shadow of the planet cast onto them, and also the shadow of the rings cast onto the planet. These are not proper shadows; sorry to disappoint, but remember – it's only a demo! One latitude band of the planet's geometry is singled out and coloured darker to achieve the ring's shadow (the true shadow would actually have a somewhat different shape, but who notices?).

The planet's shadow on the rings is more cunning. The ring texture is 32 x 2, where the first row of 32 texels corresponds to colours lit by the sun, and the second is the same set of colours, but darkened as they would appear in the shade. One texture coordinate increases radially, so all 32 texel columns are accessed from the innermost ring to the outermost. The other texture coordinate is procedurally calculated to access the lit texel row where there would be sunlight, and the shaded texel row where there would be shade – the procedure being hand-coded to match the geometry setup. Texture clamping allows the computed texture coordinates to be large, so there's a fairly rapid change from light to dark – emulating a slightly soft-edged shadow.

Earth and Moon

These were actually among the final elements to go into the demo. I wanted to transition from outer space to my landscape, so a fairly convincing planet Earth was called for as it had to be seen close-up. Running short of time as I was, if nothing acceptable came together in a hurry then I was going to have to radically rethink the whole demo. Fifteen minutes later, I had made the Earth! It's constructed almost exactly the same way as the Moon, which is just a latitude-longitude sphere with ordinary spherical texture mapping. The crucial difference is that on the Earth I have given the mapping a twist by incrementing one texture coordinate from one latitude to the next (in much the same way the galaxy was twisted). This has the effect of stretching out the clouds as if under the influence of a weather system. It seemed passable as programmer-art to me, so I went ahead with it and masked the transition to the landscape with a very cheesy fade – nothing like the grand descent through the clouds that I had envisioned, but, oh well. I used the same single-triangle-strip trick as I did on Saturn, which helped me code it quickly because it requires no stitching of circular triangle strips. In the case of the Earth and Moon with their 2D textures this creates an unwanted texture seam, but the camera path hides it.

Sky

...A textured paraboloid. Why a paraboloid, and not a sphere? Because you don't notice the difference, and because it's perhaps a bit quicker and slightly fewer instructions, and because the texture mapping is more intuitive. Bear in mind also that when you look at the real sky you are not viewing a sphere from its centre, but from a point just slightly inside the sphere’s surface. A section of a sphere and a corresponding section of an appropriate paraboloid can be made to look very similar from such a viewpoint. The texture is the 1024 x 1024 noise texture, constantly scrolling a bit to make the clouds drift by. Here it becomes apparent that it was important to generate not just any old texture but a tiling one. To achieve this, the texture was actually created in 4 mirrored quadrants, and the location-dependant parts of the algorithm ensure that the quadrants come out different from eachother.

Actually the sky is drawn in 2 passes, since I couldn't get the colouring effects I wanted in a single pass. To achieve a progression towards sunset colours on the clouds nearer the horizon, the modulation of the blue component must decrease. However, applying this modulation to a single textured pass would sap the blue out of the blue sky near the horizon – not what I wanted. Instead I split the sky into a non-textured blue-sky pass, which brightens towards the horizon, and a cloud-texture pass using a palette with an alpha channel to mask out the sky where there are clouds.

Mountains

The terrain rendering code is really the 'meat' of the demo, in my view. It was the starting point, and also the aspect into which I put the most work. The idea occurred to me while sitting outdoors having lunch one day, looking at a hill as I tried to think of what to do for the contest. Fairly soon I found myself frequently looking at mountains and wondering how they could be simulated with the smallest of programs.

I did a fairly extensive literature search to learn about algorithms for generating and rendering terrain. Some very advanced algorithms exist here, of course, but it seemed to me that none of the standard methods I encountered was well suited to the confines of a VU1 demo. The problem faced is that to obtain interesting complexity in the landscape one must resort to a highly procedural algorithm, since storage is so limited; yet at the same time rendering is made difficult because we don't have 'random access' to our generated terrain: we can only access vertices in the order the procedure generates them. This can make life awkward because access to a vertex's neighbour may not be possible at the speeds required. The finished product draws on various established techniques, but I was also forced to come up with some VU1-specific solutions to make it look sufficiently mountain-like and detailed at 60fps.

The underlying geometric structure is the triangle bintree. For those not familar, we start with a right-angled triangle and split it into two smaller such triangles by introducing a new vertex on the middle of the hypotenuse. We then repeat recursively with the two sub-triangles. A glance at the diagram reveals all:

�
���

This shows a sample bintree. The first couple of subdivision stages are highlighted – beginning with initial vertices (blue), the first level subdivision point is inserted (red), followed by the second level pair of subdivision points (green). Some finer detail subdivisions are also depicted.

In simulating terrain, each subdivision point can simply be translated in altitude by a certain amount, in a controlled pseudo-random way, with large perturbations at coarse levels of subdivision, and smaller perturbations at finer levels. We stop recursing when we have a good enough approximation to the infinitely detailed fractal surface that we would arrive at if we let the process continue ad infinitum.

The triangle bintree scheme presents a number of advantages for terrain rendering, many of them very useful within our limited VU1 scenario:

One simple recursive scheme makes a whole mountain range. This is good for code compactness – I just counted the instruction-pairs in the VUniverse terrain code, there are 215 (which could be made a lot smaller if certain features were excluded and less emphasis were placed on performance).

The level of detail can be varied among different regions of the landscape. Thus it can be used to draw finely tessellated polygons close to the camera, and larger ones further out.

It offers the possibility of generating a single mesh with no T-junctions! We don't have to patch seams, even with varying level of detail (although certain rules must be adhered to – you can't just subdivide arbitrarily and hope that you won't get any cracks. The above diagram shows a ‘good’ example, but you can see that a lot of the edges were carefully chosen to eliminate T-junctions.)

It offers the possiblity of generating the entire mesh (with varying level of detail) in a single triangle strip, if the order of vertices is properly chosen.

The top-down order of generating triangles lends itself well to a hierarchical view culling scheme.

Similarly, a mechanism for smooth blending between adjacent levels of detail can be slotted right in.

An important question is – when do we stop recursing? In the research literature, various criteria are used to limit the number of subdivisions performed. For example, if it is known that all the triangles descended from a given parent triangle will lie within a tolerably small distance above or below the parent's plane, we can stop. This would allow us to concentrate our tesselation in the 'crinkly' parts of the mountain range, and be more economical on the flatter plains. To accomplish this we would like to store information about the descendants' behaviour at every node – usually this would be ok, but is not very helpful in our VU1demo scenario since we can't go storing large data structures.

Other recursion criteria can be based on notions similarly difficult to represent in our highly procedural VU1-only approach – for example occlusion by other portions of the landscape. Again, they tend to be beyond the scope of what we can achieve without access to explicitly represented information about the mountains. In the end I opted for brute-force simplicity: a triangle will be subdivided if it comes closer to the viewpoint than a certain threshold distance (measured perpendicular to the screen), where the threshold is dependant on the depth of subdivision. This has the effect of keeping all triangles about the same size on the screen (in diameter as opposed to area), and the test is very quick to execute per triangle. Provided the triangle size is small enough compared to the separation between the threshold distances, a watertight mesh is ensured.

Another important question is – how are the random perturbations determined? The important thing here is that precisely the same random number be generated each time we visit a certain vertex during rendering. A standard pseudo-random number sequence is inappropriate, because vertices are not always visited in the same order from frame to frame, and/or may be interspersed with completely different vertices. I tried various simple functions of the vertex coordinates, with the aim of hashing all the bits together to make a random-ish number, but everything that I could think of doing in 4 or 5 instructions still ended up producing highly patterned terrains – very pretty, but not much like real mountains. Somebody's webpage eventually gave me the ideal solution (and I'm indebted to this person whose name I didn't think to note down) – the suggestion was to carry a random number along with each vertex, and to generate the new random number at each subdivision point by combining in some way the numbers corresponding to the endpoints of the subdivided edge. I discovered that the method used to combine numbers doesn't need to be at all clever to achieve a good-looking surface, since much of the desired 'hashing' is done by the mapping between spatial coordinates and tree-node position.

But there was another consideration involved in perturbing points. My main objection to the straightforward altitude-altering method was that far too many features appeared to align with the coordinate axes and diagonals, making the subdivision scheme all too obvious. My solution to was to perturb each point along all 3 axes. The y-perturbation still dominates the vector, for otherwise the surface can start to behave badly by penetrating itself. So three random numbers per vertex are needed, and these are generated after combining the 'seeds' at the parent vertices. Would you believe an ADD is sufficient to combine the parent seeds, which I follow by 3 RNEXTs since they’re good enough in this instance – and the ADD is free, because the parent vertex coordinates must be added anyway to evaluate the midpoint. (The division by 2 is performed elsewhere.)

View culling is performed by testing the bounding sphere of a triangle against the 6-sided view frustum. Since one can test against 4 planes in parallel, testing against 6 planes is done in 2 sets of 4, leaving 2 unused slots for additional planes. Into one of these spare slots is placed the sealevel plane, providing free culling of underwater geometry. The culling tests are cheaply extended to provide an indication of full inclusion within the view volume – any triangle (and thus all its descendents) so included is sent through a faster code pipeline which performs no view testing. Each bounding sphere is considerably larger than the triangle it bounds, since it must also encompass triangles which may rely on one of its vertices (recall that triangles are not output independently but are joined to form a triangle strip). The random perturbations of the descendants must also be catered for, implying that the sphere must be larger still. Rather than compute a worst-case value based on the unlikely case of all such perturbations maxing out in the same direction, I just use a fudge-factor that works acceptably for most situations, and in particular for the given camera path.

The organization of vertices into a single efficient triangle strip was inspired by exisiting research work, however I found it difficult to directly translate any of the methods into VUniverse. Instead I sketched a binary tree representing terrain vertices, and stared at it for about one whole day, to derive a pair of VU1-friendly rules for outputing the required vertex sequence. The result is a triangle strip in which each triangle is output by adding just one of its vertices into the queue, optionally preceded by a single vertex swap which will occur an expected 50% of the time, for a net performance of 1.5 vertices per triangle, which I think would be the minimum possible for the given traversal.

The best feature of the entire demo goes unnoticed. It's called 'geomorphing' in the literature – this refers to a method of transitioning smoothly between terrain levels of detail by sliding the inserted vertices from their unperturbed positions in a continuous manner to their final perturbed positions, based on camera distance. If this technique is suppressed in VUniverse, the moment a triangle is subdivided becomes painfully obvious, but add the geomporphing back in and the quality is improved dramatically. Given that the camera-distance is being generated for each triangle anyway, calculation of the interpolation parameter isn't hard. The only thing to be careful of is that we don't introduce cracks into the watertight mesh we've established – a vertex mustn't be on the move the whole time between its introduction and the moment when it becomes a parent, or cracks will develop – but a carefully chosen subinterval will work.

The terrain is textured using, in case you hadn't guessed, the noise texture, in combination with yet another predefined palette. Lighting is performed, based on face normals, and therefore flat shading is used. I would have preferred to use vertex normals and gouraud shading, but it was here that I ran into the problem of not being able to access all neighbouring vertices. (We only have access to those which are also neighbours within the triangle strip, which isn't sufficient.) If anyone has a good solution to this, I'd be interested to know!

Reflection

The terrain-rendering code is called upon twice – the first time is for generating the upside-down image seen reflected in the water surface. Whereas the real mountains use z-buffering to vanish beneath the water, the upside-down mountains must be clipped at sealevel. To avoid software clipping of an enormous number of triangles – or indeed writing any software clipping whatsoever! – I came up with a solution which uses the alpha test to reject pixels beyond the water plane. This complicates the terrain code, but allows much of it to be reused. For an interpolated alpha value, the upside-down terrain must use Gouraud shading, which creates inconsistencies in the colours and causes popping, but I found it to be acceptable in the context of the reflection since it is subsequently blurred by using a couple of blend operations on the temporary VRAM buffer. The upside-down mountains are also rendered at a lower pixel resolution, and a coarser level of detail, because one can get away with this to an extent.

The geometry of the flat water surface uses the same tessellation scheme as the mountains, but at a coarser LOD and without the perturbation mechanism. I initially tried clipping a horizontal plane to the view volume, but found I had a lot more z-fighting this way. Reusing the terrain subdivision scheme was not only easier (because the work had been done) but also tended to give visually superior results.

Waves

Imagine parallel waves with a sinusoidal profile, propogating across a water surface. Now imagine 4 such wave sets, with different amplitudes, wavelengths and propogation directions, added together. If I told you it was possible to compute and add these 4 sine waves over a tesselated surface, compute the normal to the surface at each vertex (not an approximate normal based on triangle edges, but the true analytic normal), then use this normal to derive an approximate reflection vector which is projected into a texture space, plus do the standard transformation and projection of each vertex, and do all this in 12 cycles per triangle, would you believe me? (I know I wouldn't.) Read on to find out whether I'm winding you up...

A common approach to simulating a water surface is to maintain the surface height at a discrete set of gridpoints, and simulate the dynamics of water by specifying rules for propogating perturbations from neighbour to neighbour. This is all well and good, except we have at most a few K in which to store our grid of heights from frame to frame.

Remember though, you call the shots in your own demo. If you choose not to allow anything to interact with the water, you won't need the surface to respond dynamically like this – instead it can just idle away in a steady state and still look realistic if you do things well enough. One such steady state is sinusoidal ripples moving at a constant speed over the surface, but I figured a single sine wave might create rather too simple a surface to look realistic. On the other hand, summing up 4 sine waves may give just enough visual complexity to create the desired effect, and since the VU architecture allows us to evaluate 4 components in parallel, this was the starting point of developing the water algorithm for the demo.

My initial idea was that I might be able to use an upper-pipeline version of the sine function. In this way, you can work out 4 sines in parallel, and a good deal quicker than the EFU sine instruction – see for example Colin Hughes' postings on the VU newsgroup. But would this be quick enough, given that it's only one of many things to be done at each vertex? In this case there's a much quicker way, which you may think obvious when I tell you, but it took me a surprisingly long time to arrive at. If we assume a regular grid tesselation, the change in each angle argument will be the same from one gridpoint to the next, regardless of whether we're stepping in the direction of propogation, or at some oblique angle to it. So if we maintain both the sine and cosine of each angle, an incremental rotation (in 2D) gets us from one gridpoint to the next. That is, we get 4 sines (and 4 cosines) in 4 cycles! (I'm only counting upper instructions, as it's a safe bet the algorithm will end up being upper-pipeline-bound.) Summing the 4 sines to get a height value is also easy – just use ESUM, assuming that our loop will be at least as long as ESUM's throughput. (It will.)

But it gets better. The function we are considering is

	 4

	y = S Ai sin (pi x + qi z + ri)

	 i=1

where Ai is the amplitude of the ith sinusoid, pi and qi together define its direction and wavelength, and ri provides a phase shift. Ultimately we can make ri be a function of time, so the surface animates, but for now just think of it as a constant. So a point on the surface is (x,y,z), where y (positive upwards) is the function of x and z given above. To obtain a normal n to the surface at any point, we can work out partial derivatives and take the cross product:

	n = ((/(z) (x,y,z) × ((/(x) (x,y,z)

	 = (0, (y/(z, 1) × (1, (y/(x, 0)

	 = (-(y/(x, 1, (y/(z)

	 = (-S Ai pi cos (pi x + qi z + ri), 1, S Ai qi cos (pi x + qi z + ri))

This may seem a little scary at first sight, but look again – we have already calculated the cosines, when we did the incremental rotation! So we just need to scale and sum the 4 cosines. The x and z components can be done in parallel, so we get a normal in just 4 cycles! Admittedly it's not a unit normal (unless the x and z components happen to both come out zero), but that won't turn out to be a problem. This is a great way to work out the normal, because it's not only cheap but also fully accurate (being independent of the grid resolution).

It's looking quite promising now. I had a question about rounding errors though... what would happen to the precision if we performed this incremental rotation a lot of times in succession, as we'd like to do? Might the resulting sine and cosine values grow or shrink unacceptably before we'd covered the width of our grid? To help me answer this, I ran a test. Using single precision floats throughout, I wrote a program to pick a random 2D vector, and a random angle through which to rotate it. I built the matrix for the rotation, and applied it to the vector a thousand times in succession, and then compared the size of the final vector with that of the original vector. The I put this test in a loop and ran it ad infinitum with different random vectors and rotations, maintaining the worst-case error. This worst-case error turned out to be less than one part in a thousand – and remember, that's the worst-case after stepping across a thousand gridpoints. This seemed more than acceptable for my purposes.

We're going to need a reflected ray so we can derive some texture coordinates within the reflection texture we've already rendered in VRAM. Here is the standard expression for the reflected ray r, given the view vector v and the unit normal n:

	r = 2(n.v)n – v

I pointed out earlier that our calculated normal is not a unit one, but here I make the approximation that it is – it has a y-component of 1, and I only use low-amplitude waves because that's how this sinusoidal model can give the most realistic effects. Plus it was a calm day in VUniverse. If the waves have low amplitude, the normal is presumably a faily small perturbation of (0,1,0) and can be approximated as being unit in magnitude. Thus the above expression for r should be good enough for our purposes.

The water effect in the demo is actually two effects combined. The flat surface already mentioned (see ‘reflection’), with a trivial reflection calculation, provides the look of the water from afar, but when you zoom down to the surface this is mixed with the wavy effect close to the camera. For the completely flat reflection, I simply use the view vector v (or a linear function thereof) to address the texture, since the reflection texture is already an 'upside-down' rendering, so for the wavy version we'd like to formulate the texture-addressing vector as a perturbation of v – call it v'. To get from the reflection vector r to this perturbed view vector v', we must flip the y-component, since the reflection texture is upside down, and negate the vector, since r and v' point on opposite sides of the normal. Hence,

	v' = (-r x, r y, -r z)

	 ((vx – 2 (nx vx + vy + nz vz) nx, 2 nx vx + vy + 2 nz vz , vz – 2 (nx vx + vy + nz vz) nz)

	 ((vx – 2 nx vy, vy + 2 nx vx + 2 nz vz, vz – 2 nz vy)

	 ((vx, vy, vz) – 2 (nx vy, vy, nz vy) + 2 (0, nx vx + vy + nz vz , 0)

	 (v – 2 vy n + 2 (n.v) j

where j is the vector (0,1,0). Some of the terms were approximated to zero because nx and nz are assumed small. Clearly the final expression requires only a handful of instructions. Rather than work out exactly how many, at this point I'll mention that all the computations above are carried out not in world coordinates, but in camera and/or viewport coordinates. This complicates things somewhat – several quantities must be pretransformed outside the loop – but it shaves precious cycles off the inner loop by avoiding the need to do extra transformation of vectors.

The perturbed view vector is then used to address the reflection texture. This is a perspective projection, since we are effectively casting out a ray and seeing where it intersects a plane. We'll need a scale and offset operation to match it up to the width and height of the texture, and take account of the fact that the origin isn't in the middle. However, we don't actually need to perform the perspective divide on the VU – we can ask the GS do it for us! That is, once v' has been scaled and offset (2 instructions) we can just stuff the 3 vector components into STQ and be done with it.

After adding in a view-culling operation, the algorithm is implemented in 23 upper instructions per vertex. So what about my bold claim of 12 cycles per triangle? Remember, we're generating points on a uniformly tessellated grid – so provided we keep hold of the previous row of points, one side of our triangle strip doesn't need any work – we just recall the points from memory. So really we get two triangles per computed vertex, and 12 cycles per triangle was the truth. (Due to the restricted memory, I don't generate whole rows at once, but shorter runs of vertices, so in practice there are also loop overheads to consider.)

To complete the water effect, a linear fall-off takes place as the grid recedes into the distance, and when the wave amplitude reaches zero the effect is killed altogether and the simple flat reflection effect takes over. I call this 'hydromorphing' (a pun on ‘geomorphing’).

Script and camera path

To tie everything together in the final days (or was it hours?) leading up to the contest deadline, I wanted to create a seemless flow between all of the sights of VUniverse. I set up a simple script mechanism to switch each effect on and off at the right time, and threw together some cubic B-spline code for creating a smooth path between camera control points and camera Euler angles, at specified keyframes. Each demo element exists in a coordinate space that allows sensibly sized numbers to be used, which probably made things easier rather than harder, and there was no need to match up enormously different scales of distance. From that point it was just a matter of typing in a lot of numbers!

I hope you have found this to be of some use, and maybe now feel a little more inspired to enter the next contest.

Acknowledgements

I am very grateful to Jon Steele of SCEA for setting up ATMON, and for his assistance in persuading my laptop to communicate with the debug unit. Thanks are also due to Neversoft for the loan of the debug unit. I was greatly inspired by authors and researchers (too numerous to mention) in the field of real-time terrain rendering. Thank you to to Kirk Bender for the demo harness itself, and to the rest of the guys at SCEA for their work in running a supremely challenging contest, and for providing such an opportunity for creativity. It was a pleasure to enter, and an honour to win the prize – which was gratefully received and has been put to good use. Last but not least, I’d like to acknowledge the support and understanding of my wife Nicole, who never complained that I spent most of my spare time sitting at the computer.

