

PlayStation®2 VU Command Line™
Preprocessor Release 1.4x

User’s Manual

© 2002-2004 Sony Computer Entertainment America

Publication date and document version: May 2004, Version 2.0

Sony Computer Entertainment Inc.
1-1, Akasaka 7-chome, Minato-ku
Tokyo 107-0052, Japan

Sony Computer Entertainment America
919 E. Hillsdale Blvd.
Foster City, CA 94404, U.S.A.

Sony Computer Entertainment Europe
30 Golden Square
London W1F 9LD, U.K.

The PlayStation®2 VU Command Line™ Preprocessor Release 1.4x User's Manual is supplied pursuant to and subject
to the terms of the Sony Computer Entertainment PlayStation® license agreements.

The PlayStation®2 VU Command Line™ Preprocessor Release 1.4x User's Manual is intended for distribution to and use
by only Sony Computer Entertainment licensed Developers and Publishers in accordance with the PlayStation® license
agreements.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part, of this book
is expressly prohibited by law and by the terms of the Sony Computer Entertainment PlayStation® license agreements.

Ownership of the physical property of the book is retained by and reserved by Sony Computer Entertainment.
Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is prohibited.

The information in the PlayStation®2 VU Command Line™ Preprocessor Release 1.4x User's Manual is subject to
change without notice. The content of this book is Confidential Information of Sony Computer Entertainment.

PlayStation® and the PlayStation® logo () are registered trademarks of Sony Computer Entertainment Inc. All other
trademarks are property of their respective owners and/or their licensors.

VU Command Line™ is a trademark of Sony Computer Entertainment. VCL is the abbreviated name for VU Command
Line™.

gasp ©1996 The Free Software Foundation, Inc. (FSF).

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Table of Contents

About This Manual vii
Changes Since Last Release vii
Related Documentation vii
Typographic Conventions vii

Overview 1
What is the VU Command Line™ (VCL) Preprocessor? 1
Merging of Upper and Lower Instructions in One Code Stream 1
Syntax Simplification 1
Variable Naming and Registers Allocation 1
Instruction Scheduling 1
Macro Usage 2

Syntax Simplification 3
Merging of Upper and Lower Instructions 3
Variable Naming and Registers Allocation 3
Number Literals Peculiarities 4
Register Availability 4
Instruction Simplification 4
Floating-Point Register Fields Specification 6
Broadcast Instructions 6

Instruction Scheduling and Data Tracking 7
Instruction Scheduling 7
Loop Unrolling 7
Instructions Ordering 9
Branch Delay Slots 10
Code Removal 10
E, D, and T Bits 10
Load and Store Offsets 11
Data Tracking 12
Set Before Use 12

Branching 13
Labels 13
Calls to Functions 13
Functions Calling Sub-Functions 13
Jump Tables 14
Recursive Functions 15

Integration of VSM Code Within the VCL Code 16
.vsm / .endvsm and .raw / .endraw 16
.rawloop / .endrawloop 17

Macros and Other Preprocessor Usages 18
Using the C Preprocessor 18
Using Macros with the C Preprocessor 18
Using gasp 18
Using Macros with gasp 19
Issues with gasp 19
Examples of Preprocessor Usage 19

Command-Line Parameters 20
Command-Line Syntax 20
–c 20
-C 20
–d 20
-e 20

iv Table of Contents

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

-f 20
–g 20
–g+ 20
–G 20
–h 20
–I<includefilepath> 21
<inputfilename> 21
-j<outputfilename.s> 21
-K 21
–L 21
–m 21
–M 21
–n 21
–o<outputfilename.vsm> 21
–P 21
-q 21
-s 21
-S 22
–t<seconds> 22
-u<string> 22
–Z 22

Keywords 23
.global symbolname 23
.init_vi VIxx <, VIxx …> 23
.init_vf VFxx <, VFxx …> 23
.rem_vi VIxx <, VIxx …> 23
.rem_vf VFxx <, VFxx …> 23
.init_vi_all 23
.init_vf_all 23
.mpg vucodeoffset 23
.name progname 24
.raw / .endraw 24
.rawloop / .endrawloop 24
.syntax old | new 24
.vsm / .endvsm 24
--barrier 24
--cont 24
--enter / --endenter 24
in_vi varname (VIxx) 24
in_vf varname (VFxx) 25
in_hw_acc acc / in_hw_clip clip / in_hw_i i / in_hw_p p / in_hw_q q / in_hw_r r /
in_hw_status status 25
--exit / --endexit 25
--exitm macroname / --endexit 25
out_vi varname (VIxx) 25
out_vf varname (VFxx) 25
out_hw_acc acc / out_hw_clip clip / out_hw_i i / out_hw_p p / out_hw_q q / out_hw_r r25
--LoopCS n,m 25
--LoopExtra n 26
--LoopAbs n 26

Appendix A: Macro Examples 27
Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor 43

Pipelining and VCL 43
“--LoopCS n,m” Directive 45

 Table of Contents v

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Appendix C: VCL Tips and Common Mistakes 49
Preprocessor Errors 49
Reordering of Instructions 49
Working Registers 49
Input and Output Registers 49
Entry Points 49
Exit Points in Code 49
Conditional Branching and Loop Unrolling 49
Number Literals 49
Memory Management 50
Variable Names 50
Broadcast Instructions and Variable Names 50
Long Dependency chains 50
Typos and Instruction Pruning 50
EFU Instructions Usage 51
Register with 1s 51
Dot Product (Inner Product) 51

vi Table of Contents

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

This page intentionally left blank.

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

About This Manual

This User's Manual provides a description of the various functionalities of the VU Command Line™ (VCL)
preprocessor (1.4x).

Changes Since Last Release

The following sections were updated or added:

• Syntax Simplification, (updated) on page 3.

• Number Literals Peculiarities, (updated) on page 4.

• Register Availability, (updated) on page 4.

• Broadcast Instructions, (updated) on page 6.

• Loop Unrolling, (updated) on page 8.

• Clip Instruction, (added) on page 9.

• E, D and T Bits, (updated) on page 11.

• Data Tracking, (updated) on page 12.

• Set Before Use, (updated) on page 13.

• Jump Tables, (rewritten) on page 15.

• Recursive Functions, (rewritten) on page 15.

• Using Macros with the C Preprocessor, (rewritten) on page 19.

Subsections -f, -g+, -j, -q and -s of section Command-Line Parameters were either modified or added,
on pages 21–23.

Subsections .init_vi, .init_vf, .rem_vi, .rem_vf, .syntax, in_hw_*, --exit, out_hw_*, --LoopExtra and
LoopAbs of section Keywords were either modified or added, on pages 24–27.

Appendix C: VCL Tips and Common Mistakes was added.

Related Documentation

Note: the Developer Support Website posts current developments regarding the Libraries and also
provides notice of future documentation releases and upgrades.

Typographic Conventions

Certain Typographic Conventions are used throughout this manual to clarify the meaning of the text:

Convention Meaning
courier Indicates literal program code.

italic Indicates names of arguments and structure
members (in structure/function definitions only).

medium bold Indicates data types and structure/function
names (in structure/function definitions only).

blue Indicates a hyperlink.

viii About This Manual

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

This page intentionally left blank.

 Overview 1

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Overview

What is the VU Command Line™ (VCL) Preprocessor?

The VCL preprocessor is an application that was developed to simplify some of the complex and tedious
tasks associated with assembly-level programming of the VU processor. These tasks include:

• Dual pipeline processing
• Loop unrolling
• Register allocation
• Instruction scheduling

The VCL preprocessor outputs a standard VSM/DSM file (that can be compiled using dvpasm). It is
available for both the Linux and Win32 platforms.

Merging of Upper and Lower Instructions in One Code Stream

The VCL preprocessor simplifies VU programming by merging upper and lower instructions. Pairing of
instructions is no longer required.

Syntax Simplification

In some cases, standard VU programming requires the programmer to specify which register will be used as a
parameter in instructions such as MULQ. The VCL preprocessor performs the proper instruction assignment,
and only requires the programmer to specify the more generic MUL. The rest is deduced from parameters
attached to the instruction in question.

Variable Naming and Registers Allocation

The VCL preprocessor provides for variable naming. Self-explanatory variable names like ‘vertexptr’ and
‘vertexcolor’ are permissible, instead of using standard register names such as ‘vi02’ or ‘vf06’.

Instruction Scheduling

Assembly language programming for high-performance applications requires intimate knowledge of
instruction timing (throughput and latency). Because of this, instruction scheduling is often very time
consuming.

Data tracking is a tedious task because error messages regarding suspicious variable-related issues (use
before set, for example) are not provided. High-performance code can appear to be confusing, especially if
two blocks of code not otherwise related are reorganized into one block, for speed purposes.

While knowledge of instructions timing is still highly recommended, use of the VCL preprocessor will
simplify instruction scheduling, keeping the code in a logical order, without compromising performance.
The VCL preprocessor is aware of timing and dependencies, and in most cases will generate code that
rivals hand-tuned code.

One of the most powerful features of the VCL preprocessor is related to loop unrolling. (See “Loop
Unrolling” on page 7 for more details.)

2 Overview

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Macro Usage

With C-preprocessor or gasp, macro usage has always been possible, even without the VCL preprocessor.
Use is limited however, as instructions must be paired, and that this pairing may not be broken down.
However, because VCL programming is single-streamed, it reinforces the power offered by macros.

 Syntax Simplification 3

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Syntax Simplification

The VCL preprocessor offers two syntax schemes, simply referred to as “old” and “new”. The “old” scheme
is standard VU programming, where instructions must be specified using the full name, and where fields
must be specified in instructions, as well as the registers to which they belong.

The “new” scheme attempts to simplify coding and code readability. To enable its use, the following must
be added to the source file before any instructions:

.syntax new

An alternative way of enabling it is to specify “-n” as a command-line argument to the VCL preprocessor.

At any given point in a VCL file, it is possible to go back to the old syntax by specifying:

.syntax old

Note that merging of upper and lower instructions, as well as register naming, happens with either syntax.
This section describes aspects of the “new” syntax.

 Merging of Upper and Lower Instructions

Because the VCL preprocessor manages instruction scheduling, it is no longer necessary to pair
instructions. All instructions (from either the upper or lower pipeline) can now be ordered sequentially, in a
single stream.

Variable Naming and Registers Allocation

The use of named variables is permissible and encouraged. Besides making code more readable, named
variables allow the VCL preprocessor to manage register allocation.

 It is allowable to tie a specific register to a named variable and use register names directly. (See
“Instruction Scheduling” on page 7 for more details.) However, this limits the register allocation process.

 The following are acceptable examples of variable naming usage:

IADDIU inputptr, vi00, 32
LQ vertex, 0(inputptr)
MAX vector1111, vf00, vf00[w]

The VCL preprocessor checks to see if a variable is used before being set, and will output an error
message if that is the case.

Floating-Point and Integer Variable Naming

The VCL preprocessor tracks floating-point and integer variable names separately. Although not
recommended, it is still possible to use the same variable name for both the floating point and the integer.
Note that each will have to be initialized separately prior to use.

Special Variable Name “i”

To ease the porting of C code to the VCL preprocessor, the variable name “i” is permitted for an integer
register. Assuming such a named variable isn’t used with upper instructions, the VCL preprocessor will be
able to discern between the hardware register I, and the variable. However, use of this variable name is
discouraged, as it inhibits one of the VCL preprocessor’s primary functions, which is to make code more
readable.

4 Syntax Simplification

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Number Literals Peculiarities

In cases where a number literal must be specified, it is possible to specify a string instead, which will be
assumed to be a defined value, and will therefore be ported as-is to the output file. Care must be taken, as
the VCL preprocessor might not always be able to differentiate a typo from valid code. For example, if you
want to write:

LOI 0x3F

but instead write:

LOI x3F

The VCL preprocessor will accept it, only to have dvpasm reject it, with what could look like a cryptic
message. Also note that any number literal that is not preceded by “0x” will be parsed by VCL as a float
value.

Register Availability

It is necessary to let the VCL preprocessor know which registers are available for it to use. This is
accomplished by using the following keywords:

.init_vi VIxx <,VIxx>

.init_vf VFxx <,VFxx>

.init_vi VIxx-Vixx

.init_vf VFxx-VFxx

.init_vi_all

.init_vf_all

“.init_vi” and “.init_vf” are used to specify, respectively, which integer and floating-point registers
are available. A register range may be specified by using a dash. Specifying “vi00” or “vf00” is illegal,
and will result in an error message. “.init_vi_all” and “.init_vf_all” may be alternatively used in
lieu of specifying every single register by hand. Having both “.init_vi” and “.init_vi_all”, for
example, is illegal.

Similarly, it is also possible to make a register unavailable by using the following kewords:

.rem_vi VIxx <,VIxx>

.rem_vf VFxx <,VFxx>

.rem_vi VIxx-Vixx

.rem_vf VFxx-VFxx

Instruction Simplification

Many VU instructions stem from a single, more generic instruction. Such is the case for ADD, ADDi, ADDq,
ADDbc, ADDA, ADDAi, ADDAbc. In this case, the stem instruction would be ADD.

The VCL preprocessor accepts the replacement of the specific instructions by the stem instruction, as the
specific instruction may be deduced by the parameters attached to the instruction. Therefore, a program
could use:

ADD vertexcolor, vertexcolor, q

The VCL preprocessor would convert this (possibly) to:

ADDq.xyzw vf03xyzw, vf03xyzw, q

 Syntax Simplification 5

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

The following table lists all instructions affected by the syntax simplification:

Table 1

Original Instruction Simplified Stem Instruction

ADD ADD

ADDi

ADDq

ADDbc

ADDA

ADDAi

ADDAq

ADDAbc

SUB SUB

SUBi

SUBq

SUBbc

SUBA

SUBAi

SUBAq

SUBAbc

MUL MUL

MULi

MULq

MULbc

MULA

MULAi

MULAq

MULAbc

MADD MADD

MADDi

MADDq

MADDbc

MADDA

MADDAi

MADDAq

MADDAbc

6 Syntax Simplification

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Original Instruction Simplified Stem Instruction

MSUB MSUB

MSUBi

MSUBq

MSUBbc

MSUBA

MSUBAi

MSUBAq

MSUBAbc

MAX MAX

MAXi

MAXbc

MINI MINI

MINIi

MINIbc

Floating-Point Register Fields Specification

The VCL preprocessor only requires that a floating-point register field be specified next to the instruction
itself, as opposed to specifying it on the instruction and the register that it belongs to. Therefore, the
following would be used:

ADD.xyz newvertexposition, vertexposition, translation

Instead of:

ADD.xyz vf04xyz, vf03xyz, vf02xyz

Specifying none is understood to be the same as specifying all (xyzw). Therefore, the following 2 cases
would be equivalent:

MAX color, color, vector0000
MAX.xyzw color, color, vector0000

Broadcast Instructions

When a field used as a broadcast is specified in the instruction (such as ADDbc or MADDbc), the VCL
preprocessor requires the specified field to be next to the associated register. The following example is a
typical vertex multiplication by a matrix.

MUL acc, matrix0, inputvertex[x]
MADD acc, matrix1, inputvertex[y]
MADD acc, matrix2, inputvertex[z]
MADD finalvertex, matrix3, inputvertex[w]

This syntax is only recognized as such with instructions that accept broadcasts. With other type of
instructions, the bracket would become part of the register name itself. For example:

FTOI0 result, value[y]

Because FTOI0 instructions do not support broadcasts, “value[y]” will be taken as a simple atomic variable
name, and not as meaning “the ‘y’ element of variable ‘value’”.

 Instruction Scheduling and Data Tracking 7

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Instruction Scheduling and Data Tracking

Instruction Scheduling

Another useful feature of the VCL preprocessor is instruction rescheduling, which maximizes execution
speed and code compactness. It tracks timing for each instruction (throughput and latency), and will try to
reorder instructions to minimize stalls and maximize efficiency. In some rare cases (where possible), it will
also try to move instructions from the upper to lower pipeline, and vice-versa.

The VCL preprocessor also tracks the I, ACC, Q and P registers, as well as the CLIP flags, and will generate
proper delays between related instructions to insure valid code generation.

If, for some reason, you want to avoid instruction rescheduling past a certain point, simply insert the
keyword:

--barrier

Important: Under certain circumstances, using the following line of code in a VSM/DSM file causes a
problem:

NOP[E] XGKICK VIxx

To avoid the problem, placing these two instructions on two different lines:

NOP XGKICK VIxx
NOP[E] NOP

To ensure such code isn’t generated, follow an XGKICK instruction with “--barrier”.

Loop Unrolling

Instead of repeating the same code many times in a row, the VCL preprocessor allows loop unrolling by
specifying the following, at the beginning of a loop:

--LoopCS n,m

The loop ends when a branch instruction to the beginning of the loop is encountered. The following would
constitute a valid loop:

LoopStart:
--LoopCS 3,3

LQI inputvertex, 0(inputptr++)

MUL acc, matrix0, inputvertex[x]
MADD acc, matrix1, inputvertex[y]
MADD acc, matrix2, inputvertex[z]
MADD finalvertex, matrix3, inputvertex[w]

SQI finalvertex, 0(outputptr++)

IBNE inputptr, endbuffer, LoopStart

At this time, loop unrolling is limited to simple loops without conditional branching. While the VCL
preprocessor will not fail or give any error message if a branch is encountered inside the loop, the code
generated will be less than optimal.

8 Instruction Scheduling and Data Tracking

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

If the loop in question is performing clipping operations, it is possible to set the ADC bit without actually
doing any conditional branch:

CLIPW.xyz clipvtx, ClipData ; Trigger clip calculations
FCAND vi01, 0x3FFFF ; Set if any of previous 3 vtx is clipped
IADDIU adc_bit, vi01, 0x7FFF
ISW.w adc_bit, outvl_xyzf2(output_buffer) ; Set if clipped

Loop unrolling almost always results in a prologue followed by the main loop body, then concluded by an
epilogue. The size of the prologue and epilogue depends partly on the parameters given to “--LoopCS”,
but also depends on how well the code can be rescheduled.

The “--LoopCS” keyword takes two parameters: n (minimum number of loops) and m (slop count).

n (Minimum Number of Loops)

As it unrolls the loop, the VCL preprocessor needs to know the loop’s minimum iteration count. This
will allow it to potentially move instructions with side effects (stores, for example) higher in the
execution pipeline, sometimes even before any conditional branch is executed. This translates into
tighter (hence faster) code.

m (Slop Count)

The slop count describes how many output iterations can be done without overwriting data past the
end of an output array. A value of 1 would indicate that it is safe to execute an output instruction one
iteration ahead of the current iteration, allowing for better instructions scheduling in some cases.

If the input is 30 vertices and “--LoopCS 3,3” is specified, a 33-vertex output buffer will be
required. If the input is less than 30 vertices, specify “--LoopCS 3,0” instead. Note that the VCL
preprocessor may not process vertices ahead. In this case it will not matter if m is equal to 3, or even
500. It will behave the same as if m is 0.

Tip: The number of loop iterations is often based on a counter, which is decremented once per iteration.
The loop is repeated until that counter reaches 0. A vertex counter is a good example of this. If the loop
happens to be running through a given array, it is worth nothing that instead of using a counter, the address
of the buffer ending may be calculated ahead of the loop. Then, instead of comparing the counter to 0,
compare the current array pointer to the end pointer for equality. The end result is a saved instruction (the
decrementing of the counter), tighter loop, and therefore faster code.

Refer to Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor for more information.

Depending on the complexity of a loop, automatic loop unrolling might take a considerable amount of time.
One of the reasons for this is VCL first attempts to fit a loop’s instructions within n cycles, where “n” is the
loop’s theoretical minimum cycle count. If it fails, it ups the cycle count by 1, and repeats the process until it
finds a solution. If for some reason you know that a loop will not fit within a given amount of cycles, you can
let VCL know by using either one of the following keywords within the loop:

--LoopExtra n

--LoopAbs n

If “--LoopExtra n” is specified, VCL will add “n” to the theoretical minimum cycle count. If “--LoopAbs
n” is specified, VCL will take “n” as the theoretical minimum cycle count.

 Instruction Scheduling and Data Tracking 9

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Instructions Ordering

Care must be taken to place instructions in the order in which they are to take place. For example,
standard VU programming would allow a DIV instruction right above an MULQ. The result of the previous
DIV would be used, as is it known that the result of a DIV instruction isn’t available for seven cycles. With
the VCL preprocessor, the MULQ must be placed before DIV. It will reposition them as it sees fit, to
maximize execution speed and code compactness.

Memory Aliasing and Instructions Reordering

The VCL preprocessor reorders instructions while preserving logical order. Instructions modifying a given
variable will always appear in the same relative order to each other as they are in the input file. However,
the VCL preprocessor has no explicit knowledge of memory, and more specifically, of memory aliasing.

Memory aliasing occurs when there are two different pointers potentially pointing to the same area in
memory. In such a case, it is important that instructions reading and writing to both pointers’ memory be
kept in the same relative order.

Steps must be taken to let the VCL preprocessor know that two pointers are potentially referring to the
same memory. By simply appending a suffix to all instructions related to the aliased pointers, it will know to
preserve the relative order. The following is an example for “ptr1” and “ptr2”:

SQ var1, 0(ptr1):memgroup1
LQ var2, 3(ptr2):memgroup1

Here, “memgroup1” could be any valid string. It ensures that the store (SQ) always takes precedence to the
load (LQ).

 Within one program, more than one group may be used.

Peculiarities with XGKick

Moving XGKick instructions could potentially result in hazardous code. For example, the XGKick could be
moved ahead of stores to the buffer to be XGKicked, To avoid any such cases, XGKick will never be moved
before or after a store instruction.

Clip Instruction

When a standard clipw and related instructions (fcand, fcor, etc.) are used, VCL must follow dependencies
with previous clip results, and this prohibits it from reordering such instructions. If clip test instructions like
fcand and fcor only need the last clip instruction’s results, cliplw may be used instead of clipw, and in this
case VCL will know it is allowed more freedom when scheduling and ordering instructions. For example,
with the following code:

CLIPW.xyz vertex1, vertex1[w]

FCAND VI01, 0x3f

...

CLIPW.xyz vertex2, vertex2[w]
FCAND VI01, 0x3f

VCL has to preserve the instructions’ relative order, whereas in the following case:

CLIPLW.xyz vertex1, vertex1[w]

FCAND VI01, 0x3f

...

CLIPLW.xyz vertex2, vertex2[w]
FCAND VI01, 0x3f

10 Instruction Scheduling and Data Tracking

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

VCL is free to reorder the 2 cliplw/fcand pairs. Keep in mind that VCL does not interpret the literal integer’s
parameter of instructions like fcand, so if cliplw is followed by fcand which has a literal value like 0x500
(second-to-last clip results), then results will be unpredictable.

Branch Delay Slots

The VCL preprocessor handles branch delay slots independently. Placing any instruction immediately after a
branch will cause the instruction in question to be executed only if the branch is not taken (in the case of a non-
returning branch) or when the program counter comes back from a sub-routine (in the case of a function call
such as BAL).

Code Removal

The VCL preprocessor will recognize if a code block isn’t reachable and will remove it. This saves VU micro
memory in the process.

Empty lines (NOP NOP) are also removed, and will be replaced if necessary by either a WAITQ or WAITP
instruction. Any stall introduction by instruction removal is noted by the VCL preprocessor as a comment in
the output file.

Floating-Point Field Pruning

The VCL preprocessor keeps track of which fields of a floating-point register are used, and will prune any
field that does not need to be used. This step allows it to more effectively schedule instructions under some
circumstances. The following is an example of pruning:

LQ color, 2(inputptr)
ADD color, color, ambientcolor
MINI color, color, vector1111
SQ.xyz color, 2(outputptr)

Assuming that “color” isn’t used later in the code, it will prune the w field in the three first instructions. The
code effectively becomes the same as:

LQ.xyz color, 2(inputptr)
ADD.xyz color, color, ambientcolor
MINI.xyz color, color, vector1111
SQ.xyz color, 2(outputptr)

E, D, and T Bits

Putting an [E], [D] and/or [T] bit on an instruction is valid for the VCL preprocessor. However, as it is
rescheduled, the bit will move around with the instruction it is attached to. Also, if the instruction it is
attached to is duplicated (in such cases as loop unrolling), the bit will be duplicated as well.

Instead of using the [E] bit, it is recommended to use the VCL keyword:

--cont

“--cont”, which stands for “continue”, lets the VCL preprocessor know the program will restart from this
point. Effectively, it inserts a “NOP[E] NOP” line. The main advantage of using this keyword over inserting
an explicit [E] bit is that it removes any danger of the VCL preprocessor moving the [E] bit somewhere
unexpected. Another solution to this problem is to attach the bit to a label such as:

Label:[D]

Also note, as with “--barrier”, instructions are not rescheduled beyond a “--cont”, but data dependency
checks across are still performed.

 Instruction Scheduling and Data Tracking 11

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Load and Store Offsets

When a loop containing load and store instructions LQ and SQ is unrolled, the VCL preprocessor will most
likely alter the offset parameter to at least some of the instructions. This is a result of moving the instruction
past the increment of the pointer the offset relates to. The following is an example:

LQ vertex, 0(inputptr)
LQ stq, 1(inputptr)
LQ rgb, 2(inputptr)
IADDIU inputptr, inputptr, 3
...

A possible (and simplistic) unrolling of such an instruction sequence would be:

LQ vertex1, 0(inputptr)
LQ stq1, 1(inputptr)
LQ rgb1, 2(inputptr)
IADDIU inputptr, inputptr, 3
...
LQ vertex2, 0(inputptr)
LQ stq2, 1(inputptr)
LQ rgb2, 2(inputptr)
IADDIU inputptr, inputptr, 3
...
LQ vertex3, 0(inputptr)
LQ stq3, 1(inputptr)
LQ rgb3, 2(inputptr)
IADDIU inputptr, inputptr, 3
...

However, the VCL preprocessor might instead unroll a sequence as follows, which produces the same
result, but under certain conditions provides better instruction rescheduling:

LQ vertex1, 0(inputptr)
LQ stq1, 1(inputptr)
IADDIU inputptr, inputptr, 3
LQ rgb1, -1(inputptr)
...
LQ vertex2, 0(inputptr)
LQ rgb2, 2(inputptr)
IADDIU inputptr, inputptr, 3
...
LQ stq2, -2(inputptr)
LQ vertex3, 0(inputptr)
LQ stq3, 1(inputptr)
LQ rgb3, 2(inputptr)
IADDIU inputptr, inputptr, 3
...

Note that using LQI, LQD, SQI, and SQD will prevent the possibility of such optimizations. However, their
use has proven to be more effective under certain conditions such as very tight loops.

12 Instruction Scheduling and Data Tracking

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Data Tracking

The VCL preprocessor tracks data usage for many reasons. If it determines that a variable is set but not
used afterwards, it will remove the setting instructions. If these settings need to remain in the code for the
purpose of eventually passing the variable as a parameter out of the code block, use the following keyword:

out_vi intvarname (VIxx)
out_vf floatvarname (VFxx)

“VIxx” and “VFxx” are an integer and a float register, respectively. The names “intvarname” and
“floatvarname” correspond to these registers. The VCL preprocessor will make sure the specified
register will contain the named variable value. These keywords must appear between the two keywords “-
-exit” and “--endexit”, or between “--exitm” and “--endexit”. (See “--exit / --endexit” on
page 26 for more details.)

Note that similar instructions exist for ACC (out_hw_acc acc), I (out_hw_i i), P (out_hw_p p), R
(out_hw_r r), Q (out_hw_q q) registers, and the CLIP flags (out_hw_clip clip).

Set Before Use

If a variable is found to be used before it is even initialized, the VCL preprocessor will output an error
message. If it is necessary to pass in a variable as a parameter from a different block, or from standard
VSM/DSM code, use the following keywords:

in_vi intvarname (VIxx)
in_vf floatvarname (VFxx)

These keywords must appear between the two keywords “--enter” and “--endenter”. (See “--
enter/ --endenter” on page 25 for more details.)

Specifying “in_vi” and “in_vf” does not automatically mean the link between the register and the
variable name will remain for the rest of the program, even if the same link is specified using “out_vi” or
“out_vf”. VCL reserves the right to break that link at any point.

Note that similar instructions exist for ACC (in_hw_acc acc), I (in_hw_i i), P (in_hw_p p), Q
(in_hw_q q) and R (in_hw_r r) registers, as well as the FPU results flags (in_hw_status status) and
the CLIP flags (in_hw_clip clip).

An alternative to using “in_hw_clip clip” is to have the following instruction before any clipping-related
instruction:

FCSET 0

This will let the VCL preprocessor know all clipping flags are initialized.

The VCL preprocessor does not keep track of all flags. It is aware of MAC flags, but not about sticky bits.

To initialize a variable to 0, it is illegal to use the following:

SUB varname, varname, varname

Instead, use one of the two following methods:

SUB varname, vf00, vf00
MFIR varname, vi00 ; Flags are left untouched!

13 Branching

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Branching

Labels

With the VCL preprocessor, labels are defined in the same way as under VSM/DSM. However, for a label
to remain in the output file, it must be positioned between the “--enter”/”--endenter” and “--
exit”/”--endexit” keywords (or “--exitm”/”--endexit”). If “--exit”/”--endexit” is omitted, the
label can be positioned after “--enter”/”--endenter”.

Calls to Functions

The VCL preprocessor currently does not support far function calls (calls to external functions). Therefore,
any functions called must be included in the same file as the caller, either directly or via a header file (for c-
preprocessor) or include file (for gasp).

Within the VCL preprocessor, a function is treated like any branch. There is no special method of passing
parameters in and out. The following code is an example:

IADDIU vertexptr, vi00, 64
IADDIU endptr, vertexptr, 20

BAL retaddress, TransformVerticesInPlace

...

TransformVerticesInPlace:
LQ vertex, 0(vertexptr)

;*** Matrix used without being initialized! ***
MatrixMultiplyVertex vertex, matrix, vertex

SQI vertex, 0(vertexptr++)
IBNE vertexptr, endptr

JR retaddress

In this case (for register scope), the function “TransformVerticesInPlace” behaves the same as if it
were in-lined. Assuming the matrix hasn’t been initialized before the function call, an error would be given
to this effect.

Functions Calling Sub-Functions

It is valid for a function to call a sub-function. However, be aware that returning addresses conflicts will
result in an infinite loop.

14 Branching

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Jump Tables

Starting with 1.4x, the VCL preprocessor supports jump tables. It can be implemented using either a JR or
JALR instruction, and the jump instruction must be suffixed by a semi-colon (“:”) followed by a semi-colon-
separated list of possible destination labels. Here is an example:

 --enter
 --endenter

 ILW.x JumpAddress, 0(vi00)
 ILW.y Param1, 0(vi00)
 ILW.z Param2, 0(vi00)

 JALR RetAddress, JumpAddress:Function1:Function2

 ISW.y Param1, 0(vi00)
 ISW.z Param2, 0(vi00)

 --exit
 --endexit

Function1:
 IADDIU Param1, Param2, 0
 JR RetAddress

Function2:
 IADDIU Param2, Param1, 0
 JR RetAddress

VCL does not support the calling of functions that are located in a different file from the caller.

 Branching 15

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Recursive Functions

The VCL preprocessor does not support recursive functions natively. However, it is possible for a program
to maintain its own stack, push the return address register before calling the function recursively, pop the
address on return, and eventually return, as is shown in the example below. Note also that some jump and
branching destinations will have to be specified on some instructions, as specified in the section on jump
tables:

 .init_vf_all
 .init_vi_all
 .syntax new

 --enter
 --endenter

 ILW.x JumpAddress, 0(vi00)
 ILW.y Param1, 0(vi00)
 ILW.z Param2, 0(vi00)
 IADDIU StackPtr, vi00, 1023

 JALR RetAddress, JumpAddress:Function1:Function2

MainRet:
 ISW.y Param1, 0(vi00)
 ISW.z Param2, 0(vi00)

 --exit
 --endexit

;--
Function1:
 IADDIU Param1, Param2, 0
 JR RetAddress

;--
Function2:
 IBNE Param2, vi00, F2_1

 IADDIU Param2, Param1, 0
 JR RetAddress

F2_1:
 ; Do something here...

 ISW.x RetAddress, 0(StackPtr) ; Push return address on stack
 ISUBIU StackPtr, StackPtr, 1 ;

 ISUBIU Param2, Param2, 1 ; Call function recursively
 BAL RetAddress, Function2 ;

F2_2:
 IADDIU StackPtr, StackPtr, 1 ; Pop return address from stack
 ILW.x RetAddress, 0(StackPtr) ;

 JR RetAddress:MainRet:F2_2 ; Return to caller

 Integration of VSM Code Within the VCL Code 16

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Integration of VSM Code Within the VCL Code

Sometimes it may be necessary to incorporate traditional VSM/DSM code within VCL code. This section
introduces two methods to do so, and explains how they are used.

.vsm / .endvsm and .raw / .endraw

This is used for inserting pre-formatted, pre-ordered VSM code. Instructions therefore have to be
organized in the original 2 stream (upper and lower). However, variables may still be named, and use the
same ones as non-VSM code. Checks for data use before set will still be performed.

“.raw” / “.endraw” is simply an alternative spelling for “.vsm” / “.endvsm”.

Note that code within a VSM block isn’t rescheduled. The block acts the same way as “--barrier”, in
that instruction rescheduling is not performed across the block. You must consider whether or not the use
of such a block contributes to better overall performance.

Also note that because such a block is meant for code only, it must appear between “--enter” / “--
endenter” and “--exit” / “--endexit” (or “--exitm” / “--endexit”. It must not be thought of as a
black box that is ported as-is to the output file. For the same reason, specifying keywords like “.equ”
inside such a block is invalid.

The following is an example of a .vsm / .endvsm block:

IADDUI matrixptr, vi00, 0
MatrixLoad mat1, 0, (matrixptr)
MatrixLoad mat2, 4, (matrixptr)

; Swap matrices
.vsm
max mat1[0], mat2[0], mat2[0] move mat2[0], mat1[0]
max mat1[1], mat2[1], mat2[1] move mat2[1], mat1[1]
max mat1[2], mat2[2], mat2[2] move mat2[2], mat1[2]
max mat1[3], mat2[3], mat2[3] move mat2[3], mat1[3]
.endvsm

MatrixSave mat1, 0, (matrixptr)
MatrixSave mat2, 4, (matrixptr)

 Integration of VSM Code Within VCL 17

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

.rawloop / .endrawloop

These directives are used to enclose a pre-formatted VSM code block to be unrolled. More control is
permitted as far as prologue and epilogue creation goes. There following is an example:

 .rawloop

loop:
 --LoopCS 10,10

 5..ftoi4.xyz ixyz, sxyz 1..lqi vrt, (ptr++)
 4..mul.xyz sxyz, nxfrm, q nop
 nop nop
 1..mul acc, m[3], vf00[w] 2..move nxfrm, xfrm
 1..madd acc, m[0], vrt[x] 2..div q, vf00[w], xfrm[w]
 1..madd acc, m[1], vrt[y] 1..ibne ptr, end_ptr, loop
 1..madd xfrm, m[2], vrt[z] 5..sqi ixyz, (optr++)

 .endrawloop

The “--LoopCS” keyword is used the same way as described in “Loop Unrolling”. While building the
prologue, the instructions with the lowest numbers are introduced first, and follow this order: 1 1-2 1-2-3 1-
2-3-4 … etc. Then the loop itself and the epilogue are created in accordance with the prologue.

Refer to Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor for more information.

 Macros and Other Preprocessor Usages 18

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Macros and Other Preprocessor Usages

Using macros with VU code has always been possible, using tools such as the C preprocessor and
gasp. The use of macros is also possible with the VCL preprocessor. In fact, it offers even more
opportunities to use these tools, as the input is single-streamed, as opposed to the double-streamed
VSM/DSM programming style.

Using the C Preprocessor

The VCL preprocessor can automatically pipe the code through the C preprocessor by giving it the “-G”
(uppercase G) command-line parameter.

Using it will allow the use of all preprocessor directives:

#if, #ifdef, #ifndef
#elif, #else
#endif
#include
#define
#undef
#line
#error

Using Macros with the C Preprocessor

Because VCL does not support multiple instructions on a single line, standard C-preprocessor macro
usage will not work except for basic, one-line macros. Use of macros with the C preprocessor is identical
to that of C/C++.

#define addition(result,param1,param2) \
 IADDIU result, param1, param2

Using gasp

Just as with the C preprocessor, the VCL preprocessor can automatically pipe the code through gasp,
by giving it the
 “-g” (lowercase g) command-line parameter.

Using gasp will allow the use, among others, of the following directives:

.assign

.include

.macro

.endm

.end

Refer to the gasp documentation for more information on the subject. Online documentation may be
found at the following URLs:

http://www.objsw.com/docs/gasp_toc.html

http://sunsite.utk.edu/gnu/binutils/gasp_toc.html

http://case.ispras.ru/PublicScripts/cgi-bin/lib.cgi/gnu/gasp_toc.html

 Macros and Other Preprocessor Usages 19

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Using Macros with gasp

As shown in the following example, using macros with gasp is simple:

.macro mymacro param1,param2
IADDIU Counter, vi00, 5
mymacrolabel\@:
ISUBIU Counter, Counter, 1
IBNE Counter, vi00, mymacrolabel\@
.endm

gasp will replace the “\@” by a number, which is incremented with each instance of a macro, so the
same macro may be used many times in the same source file.

Issues with gasp

With some versions of gasp, including gasp, number literals aren’t translated properly to the output file.
Examples of failed conversions are:

0x123 (converted to) 0
0.000123 (converted to) 0.1

The way to fix this, for now, is to use the following syntax:

0x123 (switch to) H’123
0.000123 (switch to) 1.23E-4 or (0.0001)

Also, any line without a space or tab in front of the first non-white character will be converted as though
the first word was a label. The newly created label will be suffixed by a colon.

Examples of Preprocessor Usage

Refer to Appendix A: Macro Examples for examples.

 Command-Line Parameters 20

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Command-Line Parameters

VCL is a command-line-based preprocessor. Various parameters may be passed to it, all of which are described
in this chapter.

Command-Line Syntax

VCL must be called with parameters, following the syntax:

vcl [-cCdefgGhKLmMnPSZ] [-I<includefilepath>] [-t<seconds>]
[-o<outputfilename] [-u<string>] <inputfilename>

–c
Emit nearly original source code as comments.

-C
Disable the code reduction pass.

–d
Dumb code is generated. For example, rescheduling of instructions isn’t performed.

-e
Disable the generation of [E] bits at the end of the code. Alternatively, the use of –-exitm without an
argument may be used.

-f
Disable the generation of alignment directives (.align n). The inclusion of an alignment directive causes
problems when many VCL output files are included in a single DSM file, so the use of this switch will correct
such problem.

–g
Run gasp on the input before any VCL-specific task is done. gasp is called with the following parameter
string: “–p –s –c ‘;’”. “-I” is also passed if specified.

–g+
Run gasp on the input before any VCL-specific task is done, with alternate macro mode. gasp is called
with the following parameter string: “–a -p –s –c ‘;’”. “-I” is also passed if specified.

–G
Run the C preprocessor on the input before any VCL-specific task is done.

–h
Print out the command-line help.

 Command-Line Parameters 21

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

–I<includefilepath>
To be used with “–g”; tells gasp where to find include files.

<inputfilename>
Specify the name of the VCL source file. If it is not specified, VCL will read from the standard input.

-j<outputfilename.s>
ASM output file name. Specifying the same name as the source is invalid. Create a file specifying all labels
and their address.

-K
The temporary files created by the pre-processors are not deleted. The file locations being OS-dependant,
refer to the VCL output to find them.

–L
Globally disable loop code generation.

–m
Generate “.mpg” and DMA tags automatically. This may be used as an alternative to “.mpg” within the
VCL source file.

–M
VCL retains the relative order of load and store instructions (known as the timid memory access mode).
Note: -M will be deprecated in future versions.

–n
Enable the new syntax. This may be used as an alternative to “.syntax new” within the VCL source file.
(See “Syntax Simplification” on page 1 for more details.)

–o<outputfilename.vsm>
VSM output file name. Specifying the same name as the source is invalid. If not specified, the result is
outputted to the standard output.

–P
Disable the removal of unused instructions and pruned fields pass. (See “Code Removal” on page 10 for
more details.) Note: -P will be deprecated in future versions.

-q
Enable quiet mode. Disable all but warnings and error messages.

-s
Emit symbolic variable names instead of register names. This is to help with debugging.

22 Command-Line Parameters

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

-S
The content of loops starting with “--LoopCS” will be reorganized to stagger the read and write
instructions, and to facilitate memory access by the VIF and GIF.

–t<seconds>
Specify the optimizer timeout. <second> must be 1 or higher. Default is 4. Note that this has the
potential side-effect of generating different code on different computers, as the processor speed is not
taken into account.

-u<string>
<string> is used as a unique string for label generation, instead of the file name. Useful if the filename is
especially long.

–Z
Disable the immediate field fix up pass.

Note: -Z will be deprecated in future versions.

 Keywords 23

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Keywords

.global symbolname

The directive “.global”, along with “symbolname”, is ported as-is to the output file. “symbolname” is
therefore only assumed to exist and be valid.

.init_vi VIxx <, VIxx …>

Inform VCL that the specified integer registers are available for use. A register range may be specified by
using a dash character. Specifying VI00 is illegal, as it is always considered available. Specifying
“.init_vi” and “.init_vi_all” in the same file is illegal. Note that VCL might fail to process code if
not given enough registers.

.init_vf VFxx <, VFxx …>

Inform VCL that the specified float registers are available for use. A register range may be specified by
using a dash character. Specifying VF00 is illegal, as it is always considered available. Specifying
“.init_vf” and “.init_vf_all” in the same file is illegal. Note that VCL might fail to process code if
not given enough registers.

.rem_vi VIxx <, VIxx …>

Inform VCL that the specified integer registers are not available for use. A register range may be specified
by using a dash character. Specifying VI00 is illegal, as it is always considered available. Note that VCL
might fail to process code if not given enough registers.

.rem_vf VFxx <, VFxx …>

Inform VCL that the specified float registers are not available for use. A register range may be specified by
using a dash character. Specifying VF00 is illegal, as it is always considered available. Note that VCL
might fail to process code if not given enough registers.

.init_vi_all

Inform VCL that all integer registers are available for use. Specifying “.init_vi” and “.init_vi_all” in
the same file is illegal.

.init_vf_all

Inform VCL that all float registers are available for use. Specifying “.init_vf” and “.init_vf_all” in
the same file is illegal.

.mpg vucodeoffset

Add “ret” DMA tags around the code generated by VCL, for better integration of VCL code with original
VSM/DSM code. If “.name” is also specified, two labels will be added, following the syntax
“(progname)_DmaTag” and “(progname)_DmaEnd”. “vucodeoffset” is assumed to be a valid
address.

24 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

.name progname

Add two labels, one before the code generated by VCL and the other after, following the syntax
“(progname)_CodeStart” and “(progname)_CodeEnd”. For better integration of VCL code with
original VSM/DSM code. The labels created are also made available globally, via the directive “.global”.

.raw / .endraw

Enclose pre-formatted, original VSM-style code. Same as “vsm /.endvsm”. (See “.vsm / .endvsm and
.raw / .endraw” on page 17 for more details.)

.rawloop / .endrawloop

Enclose a pre-formatted, original VSM-style code loop, to be unrolled. (See “.rawloop / .endrawloop” on
page 18 for more details.)

.syntax old | new

If “old” is specified, the syntax is the same as original VSM/DSM code. “new” specifies the new and
simplified syntax. It may be specified many times throughout the file. (See “Syntax Simplification” on page
1 for more details.)

.vsm / .endvsm

Enclose pre-formatted, original VSM-style code. Same as “.raw” / “.endraw”. (See “.vsm / .endvsm and
.raw / .endraw” on page 17 for more details.)

--barrier

Prevent the rescheduling of instruction to go across this line. (See “Instruction Scheduling” on page 1 for
more details.)

--cont

Mark a point where a program temporarily stops, and may be restarted from, via a MSCNT. A [E] flag is
inserted at this point. (See “E, D and T Bits” on page 11 for more details.)

--enter / --endenter

Specify an entry point to VCL code. Any file must have at least one entry point, but may have more than
one.

in_vi varname (VIxx)

Must be specified between “--enter” and “--endenter”. Bind a specific integer to a specific variable
name at entry. The register is considered pre-initialized, presumably by standard VSM/DSM code. Such
binding is not guaranteed to persist for the duration of the code block. (See “Set Before Use” on page 12
for more details.)

 Keywords 25

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

in_vf varname (VFxx)

Must be specified between “--enter” and “--endenter”. Bind a specific float to a specific variable
name at entry. The register is considered pre-initialized, presumably by standard VSM/DSM code. Such
binding is not guaranteed to persist for the duration of the code block. (See “Set Before Use” on page 12
for more details.)

in_hw_acc acc / in_hw_clip clip / in_hw_i i / in_hw_p p / in_hw_q q / in_hw_r r /
in_hw_status status

Must be specified between “--enter” and “--endenter”. The specified register is considered pre-
initialized, presumably by standard VSM/DSM code. (See “Set Before Use” on page 12 for more details.)

--exit / --endexit

Specify an exit point to VCL code. Its use is mandatory only if outputting parameters is necessary, or if an
explicit separation must be made between 2 portions of the code. A [E] flag is inserted at this point. (See
“E, D and T Bits” on page 11 for more details.)

--exitm macroname / --endexit

Specify an exit point to VCL code. Its use is mandatory only if outputting parameters is necessary. Unlike
“--exit”, “--exitm” lets you specify a macro name, which will be sent as-is to the output file, therefore
permitting custom ending code.

out_vi varname (VIxx)

Must be specified between “--exit” and “--endexit” or between “--exitm” and “--endexit”. Bind
a specific integer to a specific variable name at exit. The variable may then be passed to other VCL blocks,
or to original VSM/DSM code. Such binding is not guaranteed to persist for the duration of the code block.
(See “Set Before Use” on page 12 for more details.)

out_vf varname (VFxx)

Must be specified between “--exit” and “--endexit” or between “--exitm” and “--endexit”. Bind
a specific float to a specific variable name at exit. The variable may then be passed to other VCL blocks,
or to original VSM/DSM code. Such binding is not guaranteed to persist for the duration of the code block.
(See “Set Before Use” on page 12 for more details.)

out_hw_acc acc / out_hw_clip clip / out_hw_i i / out_hw_p p / out_hw_q q / out_hw_r r

Must be specified between “--exit” and “--endexit”, or between “--exitm” and “--endexit”. The
specified register may then be passed to other VCL blocks, or to original VSM/DSM code. (See “Data
Tracking” on page 12 for more details.)

--LoopCS n,m

Mark a portion of code as being a loop, and instruct VCL to unroll it. “n” is the minimum iteration of the
loop, and “m” (slop count) is the amount of output iterations that can be done without overwriting data past
the end of an output array. (See “Loop Unrolling” on page 7 for more details.)

26 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

--LoopExtra n

This can only be used in conjunction with “--LoopCS”, and cannot be used with “--LoopAbs”. This
keyword instructs VCL to attempt to fit an unrolled loop in theoretical minimum cycle count + “n” and over.
(See “Loop Unrolling” on page 7 for more details.)

--LoopAbs n

This can only be used in conjunction with “--LoopCS”, and cannot be used with “--LoopExtra”. This
keyword instructs VCL to attempt to fit an unrolled loop in “n” cycles and over. (See “Loop Unrolling” on
page 7 for more details.)

 Appendix A: Macro Examples 27

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Appendix A: Macro Examples

All macros in this appendix may be found in the file VCL_SML.i, included with the VCL preprocessor
distribution. All can be used as-is with gasp (via the “-g” command-line parameter), but all can easily be
converted to be used by the C preprocessor.

;//--
;// MatrixLoad - Load "matrix" from VU mem location "vumemlocation" +
;// "offset"
;//--
 .macro MatrixLoad matrix,offset,vumemlocation
 lq \matrix[0], \offset+0(\vumemlocation)
 lq \matrix[1], \offset+1(\vumemlocation)
 lq \matrix[2], \offset+2(\vumemlocation)
 lq \matrix[3], \offset+3(\vumemlocation)
 .endm

;//--
;// MatrixSave - Save "matrix" to VU mem location "vumemlocation" +
;// "offset"
;//--
 .macro MatrixSave matrix,offset,vumemlocation
 sq \matrix[0], \offset+0(\vumemlocation)
 sq \matrix[1], \offset+1(\vumemlocation)
 sq \matrix[2], \offset+2(\vumemlocation)
 sq \matrix[3], \offset+3(\vumemlocation)
 .endm

;//--
;// MatrixIdentity - Set "matrix" to be an identity matrix
;// Thanks to Colin Hughes (SCEE) for that one
;//--
 .macro MatrixIdentity matrix
 add.x \matrix[0], vf00, vf00[w]
 mfir.yzw \matrix[0], vi00

 mfir.xzw \matrix[1], vi00
 add.y \matrix[1], vf00, vf00[w]

 mr32 \matrix[2], vf00

 max \matrix[3], vf00, vf00
 .endm

;//--
;// MatrixCopy - Copy "matrixsrc" to "matrixdest"
;// Thanks to Colin Hughes (SCEE) for that one
;//--
 .macro MatrixCopy matrixdest,matrixsrc
 max \matrixdest[0], \matrixsrc[0], \matrixsrc[0]
 move \matrixdest[1], \matrixsrc[1]
 max \matrixdest[2], \matrixsrc[2], \matrixsrc[2]
 move \matrixdest[3], \matrixsrc[3]
 .endm

28 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// MatrixSwap - Swap the content of "matrix1" and "matrix2"
;// The implementation seems lame, but VCL will convert moves to maxes
;// if it sees fit
;//--
 .macro MatrixSwap matrix1,matrix2
 move vclsmlftemp, \matrix1[0]
 move \matrix1[0], \matrix2[0]
 move \matrix2[0], vclsmlftemp

 move vclsmlftemp, \matrix1[1]
 move \matrix1[1], \matrix2[1]
 move \matrix2[1], vclsmlftemp

 move vclsmlftemp, \matrix1[2]
 move \matrix1[2], \matrix2[2]
 move \matrix2[2], vclsmlftemp

 move vclsmlftemp, \matrix1[3]
 move \matrix1[3], \matrix2[3]
 move \matrix2[3], vclsmlftemp
 .endm

;//--
;// MatrixTranspose - Transpose "matrixsrc" to "matresult". It is safe
;// for "matrixsrc" and "matresult" to be the same.
;// Thanks to Colin Hughes (SCEE) for that one
;//--
 .macro MatrixTranspose matresult,matrixsrc
 mr32.y vclsmlftemp, \matrixsrc[1]
 add.z \matresult[1], vf00, \matrixsrc[2][y]
 move.y \matresult[2], vclsmlftemp
 mr32.y vclsmlftemp, \matrixsrc[0]
 add.z \matresult[0], vf00, \matrixsrc[2][x]
 mr32.z vclsmlftemp, \matrixsrc[1]
 mul.w \matresult[1], vf00, \matrixsrc[3][y]
 mr32.x vclsmlftemp, \matrixsrc[0]
 add.y \matresult[0], vf00, \matrixsrc[1][x]
 move.x \matresult[1], vclsmlftemp
 mul.w vclsmlftemp, vf00, \matrixsrc[3][z]
 mr32.z \matresult[3], \matrixsrc[2]
 move.w \matresult[2], vclsmlftemp
 mr32.w vclsmlftemp, \matrixsrc[3]
 add.x \matresult[3], vf00, \matrixsrc[0][w]
 move.w \matresult[0], vclsmlftemp
 mr32.y \matresult[3], vclsmlftemp
 add.x \matresult[2], vf00, vclsmlftemp[y]

 move.x \matresult[0], \matrixsrc[0] ;// These 4
instructions will be
 move.y \matresult[1], \matrixsrc[1] ;// removed if
"matrixsrc" and
 move.z \matresult[2], \matrixsrc[2] ;// "matresult" are
the same
 move.w \matresult[3], \matrixsrc[3] ;//
 .endm

 Appendix A: Macro Examples 29

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// MatrixMultiply - Multiply 2 matrices, "matleft" and "matright", and
;// output the result in "matresult". Dont forget matrix multipli-
;// cations arent commutative, i.e. left X right wont give you the
;// same result as right X left.
;//
;// Note: ACC register is modified
;//--
 .macro MatrixMultiply matresult,matleft,matright
 mul acc, \matright[0], \matleft[0][x]
 madd acc, \matright[1], \matleft[0][y]
 madd acc, \matright[2], \matleft[0][z]
 madd \matresult[0], \matright[3], \matleft[0][w]

 mul acc, \matright[0], \matleft[1][x]
 madd acc, \matright[1], \matleft[1][y]
 madd acc, \matright[2], \matleft[1][z]
 madd \matresult[1], \matright[3], \matleft[1][w]

 mul acc, \matright[0], \matleft[2][x]
 madd acc, \matright[1], \matleft[2][y]
 madd acc, \matright[2], \matleft[2][z]
 madd \matresult[2], \matright[3], \matleft[2][w]

 mul acc, \matright[0], \matleft[3][x]
 madd acc, \matright[1], \matleft[3][y]
 madd acc, \matright[2], \matleft[3][z]
 madd \matresult[3], \matright[3], \matleft[3][w]
 .endm

;//--
;// LocalizeLightMatrix - Transform the light matrix "lightmatrix" into
;// local space, as described by "matrix", and output the result in
;// "locallightmatrix"
;//
;// Note: ACC register is modified
;//--
 .macro LocalizeLightMatrix locallightmatrix,matrix,lightmatrix
 mul acc, \lightmatrix[0], \matrix[0][x]
 madd acc, \lightmatrix[1], \matrix[0][y]
 madd acc, \lightmatrix[2], \matrix[0][z]
 madd \locallightmatrix[0], \lightmatrix[3], \matrix[0][w]

 mul acc, \lightmatrix[0], \matrix[1][x]
 madd acc, \lightmatrix[1], \matrix[1][y]
 madd acc, \lightmatrix[2], \matrix[1][z]
 madd \locallightmatrix[1], \lightmatrix[3], \matrix[1][w]

 mul acc, \lightmatrix[0], \matrix[2][x]
 madd acc, \lightmatrix[1], \matrix[2][y]
 madd acc, \lightmatrix[2], \matrix[2][z]
 madd \locallightmatrix[2], \lightmatrix[3], \matrix[2][w]

 move \locallightmatrix[3], \lightmatrix[3]
 .endm

30 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// MatrixMultiplyVertex - Multiply "matrix" by "vertex", and output
;// the result in "vertexresult"
;//
;// Note: Apply rotation, scale and translation
;// Note: ACC register is modified
;//--
 .macro MatrixMultiplyVertex vertexresult,matrix,vertex
 mul acc, \matrix[0], \vertex[x]
 madd acc, \matrix[1], \vertex[y]
 madd acc, \matrix[2], \vertex[z]
 madd \vertexresult, \matrix[3], \vertex[w]
 .endm

;//--
;// MatrixMultiplyVertex - Multiply "matrix" by "vertex", and output
;// the result in "vertexresult"
;//
;// Note: Apply rotation, scale and translation
;// Note: ACC register is modified
;//--
 .macro MatrixMultiplyVertexXYZ1 vertexresult,matrix,vertex
 mul acc, \matrix[0], \vertex[x]
 madd acc, \matrix[1], \vertex[y]
 madd acc, \matrix[2], \vertex[z]
 madd \vertexresult, \matrix[3], vf00[w]
 .endm

;//--
;// MatrixMultiplyVector - Multiply "matrix" by "vector", and output
;// the result in "vectorresult"
;//
;// Note: Apply rotation and scale, but no translation
;// Note: ACC register is modified
;//--
 .macro MatrixMultiplyVector vectorresult,matrix,vector
 mul acc, \matrix[0], \vector[x]
 madd acc, \matrix[1], \vector[y]
 madd \vectorresult, \matrix[2], \vector[z]
 .endm

;//--
;// VectorLoad - Load "vector" from VU mem location "vumemlocation" +
;// "offset"
;//--
 .macro VectorLoad vector,offset,vumemlocation
 lq \vector, \offset(\vumemlocation)
 .endm

;//--
;// VectorSave - Save "vector" to VU mem location "vumemlocation" +
;// "offset"
;//--
 .macro VectorSave vector,offset,vumemlocation
 sq \vector, \offset(\vumemlocation)
 .endm

 Appendix A: Macro Examples 31

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// VectorAdd - Add 2 vectors, "vector1" and "vector2" and output the
;// result in "vectorresult"
;//--
 .macro VectorAdd vectorresult,vector1,vector2
 add \vectorresult, \vector1, \vector2
 .endm

;//--
;// VectorSub - Subtract "vector2" from "vector1", and output the
;// result in "vectorresult"
;//--
 .macro VectorSub vectorresult,vector1,vector2
 sub \vectorresult, \vector1, \vector2
 .endm

;//--
;// VertexLoad - Load "vertex" from VU mem location "vumemlocation" +
;// "offset"
;//--
 .macro VertexLoad vertex,offset,vumemlocation
 lq \vertex, \offset(\vumemlocation)
 .endm

;//--
;// VertexSave - Save "vertex" to VU mem location "vumemlocation" +
;// "offset"
;//--
 .macro VertexSave vertex,offset,vumemlocation
 sq \vertex, \offset(\vumemlocation)
 .endm

;//--
;// VertexPersCorr - Apply perspective correction onto "vertex" and
;// output the result in "vertexoutput"
;//
;// Note: Q register is modified
;//--
 .macro VertexPersCorr vertexoutput,vertex
 div q, vf00[w], \vertex[w]
 mul \vertexoutput, \vertex, q
 .endm

;//--
;// VertexPersCorrST - Apply perspective correction onto "vertex" and
;// "st", and output the result in "vertexoutput" and "stoutput"
;//
;// Note: Q register is modified
;//--
 .macro VertexPersCorrST vertexoutput,stoutput,vertex,st
 div q, vf00[w], \vertex[w]
 mul.xyz \vertexoutput, \vertex, q
 move.w \vertexoutput, \vertex
 mul \stoutput, \st, q
 .endm

32 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// VertexFPtoGsXYZ2 - Convert an XYZW, floating-point vertex to GS
;// XYZ2 format (ADC bit isnt set)
;//--
 .macro VertexFpToGsXYZ2 outputxyz,vertex
 ftoi4.xy \outputxyz, \vertex
 ftoi0.z \outputxyz, \vertex
 mfir.w \outputxyz, vi00
 .endm

;//--
;// VertexFPtoGsXYZ2Adc - Convert an XYZW, floating-point vertex to GS
;// XYZ2 format (ADC bit is set)
;//--
 .macro VertexFpToGsXYZ2Adc outputxyz,vertex
 ftoi4.xy \outputxyz, \vertex
 ftoi0.z \outputxyz, \vertex
 ftoi15.w \outputxyz, vf00
 .endm

;//--
;// VertexFpToGsXYZF2 - Convert an XYZF, floating-point vertex to GS
;// XYZF2 format (ADC bit isnt set)
;//--
 .macro VertexFpToGsXYZF2 outputxyz,vertex
 ftoi4 \outputxyz, \vertex
 .endm

;//--
;// VertexFpToGsXYZF2Adc - Convert an XYZF, floating-point vertex to GS
;// XYZF2 format (ADC bit is set)
;//--
 .macro VertexFpToGsXYZF2Adc outputxyz,vertex
 ftoi4 \outputxyz, \vertex
 mtir vclsmlitemp, \outputxyz[w]
 iaddiu vclsmlitemp, 0x7FFF
 iaddi vclsmlitemp, 1
 mfir.w \outputxyz, vclsmlitemp
 .endm

;//--
;// ColorFPtoGsRGBAQ - Convert an RGBA, floating-point color to GS
;// RGBAQ format
;//--
 .macro ColorFPtoGsRGBAQ outputrgba,color
 ftoi0 \outputrgba, \color
 .endm

;//--
;// ColorGsRGBAQtoFP - Convert an RGBA, GS RGBAQ format to floating-
;// point color
;//--
 .macro ColorGsRGBAQtoFP outputrgba,color
 itof0 \outputrgba, \color
 .endm

 Appendix A: Macro Examples 33

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// CreateGsPRIM - Create a GS-packed-format PRIM command, according to
;// a specified immediate value "prim"
;//
;// Note: Meant more for debugging purposes than for a final solution
;//--
 .macro CreateGsPRIM outputprim,prim
 iaddiu vclsmlitemp, vi00, \prim
 mfir \outputprim, vclsmlitemp
 .endm

;//--
;// CreateGsRGBA - Create a GS-packed-format RGBA command, according to
;// specified immediate values "r", "g", "b" and "a" (integer 0-255)
;//
;// Note: Meant more for debugging purposes than for a final solution
;//--
 .macro CreateGsRGBA outputrgba,r,g,b,a
 iaddiu vclsmlitemp, vi00, \r
 mfir.x \outputrgba, vclsmlitemp
 iaddiu vclsmlitemp, vi00, \g
 mfir.y \outputrgba, vclsmlitemp
 iaddiu vclsmlitemp, vi00, \b
 mfir.z \outputrgba, vclsmlitemp
 iaddiu vclsmlitemp, vi00, \a
 mfir.w \outputrgba, vclsmlitemp
 .endm

;//--
;// CreateGsSTQ - Create a GS-packed-format STQ command, according to
;// specified immediate values "s", "t" and "q" (floats)
;//
;// Note: I register is modified
;// Note: Meant more for debugging purposes than for a final solution
;//--
 .macro CreateGsSTQ outputstq,s,t,q
 loi \s
 add.x \outputstq, vf00, i
 loi \t
 add.y \outputstq, vf00, i
 loi \q
 add.z \outputstq, vf00, i
 .endm

;//--
;// CreateGsUV - Create a GS-packed-format VU command, according to
;// specified immediate values "u" and "v" (integer -32768 - 32768,
;// with 4 LSB as precision)
;//
;// Note: Meant more for debugging purposes than for a final solution
;//--
 .macro CreateGsUV outputuv,u,v
 iaddiu vclsmlitemp, vi00, \u
 mfir.x \outputuv, vclsmlitemp
 iaddiu vclsmlitemp, vi00, \v
 mfir.y \outputuv, vclsmlitemp
 .endm

34 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// CreateGsRGBA - Create a GS-packed-format RGBA command, according to
;// a specified immediate value "fog" (integer 0-255)
;//
;// Note: Meant more for debugging purposes than for a final solution
;//--
 .macro CreateGsFOG outputfog,fog
 iaddiu vclsmlitemp, vi00, \fog * 16
 mfir.w \outputfog, vclsmlitemp
 .endm

;//--
;// VectorDotProduct - Calculate the dot product of "vector1" and
;// "vector2", and output to "dotproduct"[x]
;//--
 .macro VectorDotProduct dotproduct,vector1,vector2
 mul.xyz \dotproduct, \vector1, \vector2
 add.x \dotproduct, \dotproduct, \dotproduct[y]
 add.x \dotproduct, \dotproduct, \dotproduct[z]
 .endm

;//--
;// VectorDotProductACC - Calculate the dot product of "vector1" and
;// "vector2", and output to "dotproduct"[x]. This one does it using
;// the ACC register which, depending on the case, might turn out to be
;// faster or slower.
;//
;// Note: ACC register is modified
;//--
 .macro VectorDotProductACC dotproduct,vector1,vector2
 max Vector1111, vf00, vf00[w]
 mul vclsmlftemp, \vector1, \vector2
 add.x acc, vclsmlftemp, vclsmlftemp[y]
 madd.x \dotproduct, Vector1111, vclsmlftemp
 .endm

;//--
;// VectorCrossProduct - Calculate the cross product of "vector1" and
;// "vector2", and output to "vectoroutput"
;//
;// Note: ACC register is modified
;//--
 .macro VectorCrossProduct vectoroutput,vector1,vector2
 opmula.xyz ACC, \vector1, \vector2
 opmsub.xyz \vectoroutput, \vector2, \vector1
 sub.w \vectoroutput, vf00, vf00
 .endm

 Appendix A: Macro Examples 35

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// VectorNormalize - Bring the length of "vector" to 1.f, and output
;// it to "vectoroutput"
;//
;// Note: Q register is modified
;//--
 .macro VectorNormalize vecoutput,vector
 mul.xyz vclsmlftemp, \vector, \vector
 add.x vclsmlftemp, vclsmlftemp, vclsmlftemp[y]
 add.x vclsmlftemp, vclsmlftemp, vclsmlftemp[z]
 rsqrt q, vf00[w], vclsmlftemp[x]
 sub.w \vecoutput, vf00, vf00
 mul.xyz \vecoutput, \vector, q
 .endm

;//--
;// VectorNormalizeXYZ - Bring the length of "vector" to 1.f, and out-
;// put it to "vectoroutput". The "w" field isn't transfered.
;//
;// Note: Q register is modified
;//--
 .macro VectorNormalizeXYZ vecoutput,vector
 mul.xyz vclsmlftemp, \vector, \vector
 add.x vclsmlftemp, vclsmlftemp, vclsmlftemp[y]
 add.x vclsmlftemp, vclsmlftemp, vclsmlftemp[z]
 rsqrt q, vf00[w], vclsmlftemp[x]
 mul.xyz \vecoutput, \vector, q
 .endm

;//--
;// VertexLightAmb - Apply ambient lighting "ambientrgba" to a vertex
;// of color "vertexrgba", and output the result in "outputrgba"
;//--
 .macro VertexLightAmb rgbaout,vertexrgba,ambientrgba
 mul \rgbaout, \vertexrgba, \ambientrgba
 .endm

;//--
;// VertexLightDir3 - Apply up to 3 directional lights contained in a
;// light matrix "lightmatrix" to a vertex of color "vertexrgba" and
;// having a normal "vertexnormal", and output the result in
;// "outputrgba"
;//
;// Note: ACC register is modified
;//--
 .macro VertexLightDir3
rgbaout,vertexrgba,vertexnormal,lightcolors,lightnormals
 mul acc, \lightnormals[0], \vertexnormal[x]
 madd acc, \lightnormals[1], \vertexnormal[y]
 madd acc, \lightnormals[2], \vertexnormal[z]
 madd \rgbaout, \lightnormals[3], \vertexnormal[w] ;// Here
"rgbaout" is the dot product for the 3 lights
 max \rgbaout, \rgbaout, vf00[x] ;// Here
"rgbaout" is the dot product for the 3 lights
 mul acc, \lightcolors[0], \rgbaout[x]
 madd acc, \lightcolors[1], \rgbaout[y]
 madd \rgbaout, \lightcolors[2], \rgbaout[z] ;// Here
"rgbaout" is the light applied on the vertex
 mul \rgbaout, \vertexrgba, \rgbaout ;// Here
"rgbaout" is the amount of light reflected by the vertex
 .endm

36 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// VertexLightDir3Amb - Apply up to 3 directional lights, plus an
;// ambient light contained in a light matrix "lightmatrix" to a vertex
;// of color "vertexrgba" and having a normal "vertexnormal", and
;// output the result in "outputrgba"
;//
;// Note: ACC register is modified
;//--
 .macro VertexLightDir3Amb
rgbaout,vertexrgba,vertexnormal,lightcolors,lightnormals
 mul acc, \lightnormals[0], \vertexnormal[x]
 madd acc, \lightnormals[1], \vertexnormal[y]
 madd acc, \lightnormals[2], \vertexnormal[z]
 madd \rgbaout, \lightnormals[3], \vertexnormal[w] ;// Here
"rgbaout" is the dot product for the 3 lights
 max \rgbaout, \rgbaout, vf00[x] ;// Here
"rgbaout" is the dot product for the 3 lights
 mul acc, \lightcolors[0], \rgbaout[x]
 madd acc, \lightcolors[1], \rgbaout[y]
 madd acc, \lightcolors[2], \rgbaout[z]
 madd \rgbaout, \lightcolors[3], \rgbaout[w] ;// Here
"rgbaout" is the light applied on the vertex
 mul.xyz \rgbaout, \vertexrgba, \rgbaout ;// Here
"rgbaout" is the amount of light reflected by the vertex
 .endm

;//--
;// FogSetup - Set up fog "fogparams", by specifying "nearfog" and
;// "farfog". "fogparams" will afterward be ready to be used by fog-
;// related macros, like "VertexFogLinear" for example.
;//
;// Note: I register is modified
;//--
 .macro FogSetup fogparams,nearfogz,farfogz
 sub \fogparams, vf00, vf00 ;// Set XYZW to
0
 loi \farfogz ;//
 add.w \fogparams, \fogparams, i ;// fogparam[w]
is farfogz
 loi \nearfogz
 add.z \fogparams, \fogparams, \fogparams[w]
 sub.z \fogparams, \fogparams, i
 loi 255.0
 add.xy \fogparams, \fogparams, i ;// fogparam[y]
is 255.0
 sub.x \fogparams, \fogparams, vf00[w] ;// fogparam[x]
is 254.0
 div q, \fogparams[y], \fogparams[z]
 sub.z \fogparams, \fogparams, \fogparams
 add.z \fogparams, \fogparams, q;// fogparam[z] is 255.f /
(farfogz - nearfogz)
 .endm

 Appendix A: Macro Examples 37

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// VertexFogLinear - Apply fog "fogparams" to a vertex "xyzw", and
;// output the result in "xyzfoutput". "xyzw" [w] is assumed to be
;// the distance from the camera. "fogparams" must contain farfogz in
;// [w], and (255.f / (farfogz - nearfogz)) in [z]. "xyzfoutputf" [w]
;// will contain a float value between 0.0 and 255.0, inclusively.
;//--
 .macro VertexFogLinear xyzfoutput,xyzw,fogparams
 move.xyz \xyzfoutput, \xyzw ;// XYZ part won't
be modified
 sub.w \xyzfoutput, \fogparams, \xyzw[w] ;// fog = (farfogz -
z) * 255.0 /
 mul.w \xyzfoutput, \xyzfoutput, \fogparams[z];// (farfogz -
nearfogz)
 max.w \xyzfoutput, \xyzfoutput, vf00[x] ;// Clamp fog values
outside the
 mini.w \xyzfoutput, \xyzfoutput, \fogparams[y];// range 0.0-255.0
 .endm

;//--
;// VertexFogRemove - Remove any effect of fog to "xyzf". "fogparams"
;// [x] must be set to 254.0. "xyzf" will be modified directly.
;//--
 .macro VertexFogRemove xyzf,fogparams
 add.w \xyzf, vf00, \fogparams[x] ;// xyzw[w] = 1.0 + 254.0 =
255.0 = no fog
 .endm

;//--
;// PushInteger1 - Push "integer1" on "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PushInteger1 stackptr,integer1
 isubiu \stackptr, \stackptr, 1
 iswr.x \integer1, (\stackptr):VCLSML_STACK
 .endm

;//--
;// PushInteger2 - Push "integer1" and "integer2" on "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PushInteger2 stackptr,integer1,integer2
 isubiu \stackptr, \stackptr, 1
 iswr.x \integer1, (\stackptr):VCLSML_STACK
 iswr.y \integer2, (\stackptr):VCLSML_STACK
 .endm

;//--
;// PushInteger3 - Push "integer1", "integer2" and "integer3" on
;// "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PushInteger3 stackptr,integer1,integer2,integer3
 isubiu \stackptr, \stackptr, 1
 iswr.x \integer1, (\stackptr):VCLSML_STACK
 iswr.y \integer2, (\stackptr):VCLSML_STACK
 iswr.z \integer3, (\stackptr):VCLSML_STACK
 .endm

38 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// PushInteger4 - Push "integer1", "integer2", "integer3" and
;// "integer4" on "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PushInteger4 stackptr,integer1,integer2,integer3,integer4
 isubiu \stackptr, \stackptr, 1
 iswr.x \integer1, (\stackptr):VCLSML_STACK
 iswr.y \integer2, (\stackptr):VCLSML_STACK
 iswr.z \integer3, (\stackptr):VCLSML_STACK
 iswr.w \integer4, (\stackptr):VCLSML_STACK
 .endm

;//--
;// PopInteger1 - Pop "integer1" on "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PopInteger1 stackptr,integer1
 ilwr.x \integer1, (\stackptr):VCLSML_STACK
 iaddiu \stackptr, \stackptr, 1
 .endm

;//--
;// PopInteger2 - Pop "integer1" and "integer2" on "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PopInteger2 stackptr,integer1,integer2
 ilwr.y \integer2, (\stackptr):VCLSML_STACK
 ilwr.x \integer1, (\stackptr):VCLSML_STACK
 iaddiu \stackptr, \stackptr, 1
 .endm

;//--
;// PopInteger3 - Pop "integer1", "integer2" and "integer3" on
;// "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PopInteger3 stackptr,integer1,integer2,integer3
 ilwr.z \integer3, (\stackptr):VCLSML_STACK
 ilwr.y \integer2, (\stackptr):VCLSML_STACK
 ilwr.x \integer1, (\stackptr):VCLSML_STACK
 iaddiu \stackptr, \stackptr, 1
 .endm

 Appendix A: Macro Examples 39

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// PopInteger4 - Pop "integer1", "integer2", "integer3" and
;// "integer4" on "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PopInteger4 stackptr,integer1,integer2,integer3,integer4
 ilwr.w \integer4, (\stackptr):VCLSML_STACK
 ilwr.z \integer3, (\stackptr):VCLSML_STACK
 ilwr.y \integer2, (\stackptr):VCLSML_STACK
 ilwr.x \integer1, (\stackptr):VCLSML_STACK
 iaddiu \stackptr, \stackptr, 1
 .endm

;//--
;// PushMatrix - Push "matrix" onto the "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PushMatrix stackptr,matrix
 sq \matrix[0], -1(\stackptr):VCLSML_STACK
 sq \matrix[1], -2(\stackptr):VCLSML_STACK
 sq \matrix[2], -3(\stackptr):VCLSML_STACK
 sq \matrix[3], -4(\stackptr):VCLSML_STACK
 iaddi \stackptr, \stackptr, -4
 .endm

;//--
;// PopMatrix - Pop "matrix" out of the "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PopMatrix stackptr,matrix
 lq \matrix[0], 0(\stackptr):VCLSML_STACK
 lq \matrix[1], 1(\stackptr):VCLSML_STACK
 lq \matrix[2], 2(\stackptr):VCLSML_STACK
 lq \matrix[3], 3(\stackptr):VCLSML_STACK
 iaddi \stackptr, \stackptr, 4
 .endm

;//--
;// PushVector - Push "vector" onto the "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PushVector stackptr,vector
 sqd \vector, (--\stackptr):VCLSML_STACK
 .endm

;//--
;// PopVector - Pop "vector" out of the "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PopVector stackptr,vector
 lqi \vector, (\stackptr++):VCLSML_STACK
 .endm

40 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

;//--
;// PushVertex - Push "vector" onto the "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PushVertex stackptr,vertex
 sqd \vertex, (--\stackptr):VCLSML_STACK
 .endm

;//--
;// PopVertex - Pop "vertex" out of the "stackptr"
;//
;// Note: "stackptr" is updated
;//--
 .macro PopVertex stackptr,vertex
 lqi \vertex, (\stackptr++):VCLSML_STACK
 .endm

;//--
;// AngleSinCos - Returns the sin and cos of up to 2 angles, which must
;// be contained in the X and Z elements of "angle". The sin/cos pair
;// will be contained in the X/Y elements of "sincos" for the first
;// angle, and Z/W for the second one.
;// Thanks to Colin Hughes (SCEE) for that one
;//
;// Note: ACC and I registers are modified, and a bunch of temporary
;// variables are created... Maybe bad for VCL register pressure
;//--
 .macro AngleSinCos angle,sincos
 move.xz \sincos, \angle ; To avoid modifying the
original angles...

 mul.w \sincos, vf00, \sincos[z] ; Copy angle from z to w
 add.y \sincos, vf00, \sincos[x] ; Copy angle from x to y

 loi 1.570796 ; Phase difference for sin as
cos (PI/2)
 sub.xz \sincos, \sincos, I ;

 abs \sincos, \sincos ; Mirror cos
around zero

 max Vector1111, vf00, vf00[w] ; Initialise all
1s

 loi -0.159155 ; Scale so single cycle is range 0 to -1 (
*-1/2PI)
 mul ACC, \sincos, I ;

 loi 12582912.0 ; Apply bias to remove
fractional part
 msub ACC, Vector1111, I ;
 madd ACC, Vector1111, I ; Remove bias to leave
original int part

 loi -0.159155 ; Apply original number to leave
fraction range only
 msub ACC, \sincos, I ;

 loi 0.5 ; Ajust range: -
0.5 to +0.5

 Appendix A: Macro Examples 41

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

 msub \sincos, Vector1111, I ;

 abs \sincos, \sincos ; Clamp: 0 to
+0.5

 loi 0.25 ; Ajust range: -
0.25 to +0.25
 sub \sincos, \sincos, I ;

 mul anglepower2, \sincos, \sincos ; a^2

 loi -76.574959 ;
 mul k4angle, \sincos, I ; k4 a

 loi -41.341675 ;
 mul k2angle, \sincos, I ; k2 a

 loi 81.602226 ;
 mul k3angle, \sincos, I ; k3 a

 mul anglepower4, anglepower2, anglepower2 ; a^4
 mul k4angle, k4angle, anglepower2 ; k4 a^3
 mul ACC, k2angle, anglepower2 ; + k2 a^3

 loi 39.710659 ; k5 a
 mul k2angle, \sincos, I ;

 mul anglepower8, anglepower4, anglepower4 ; a^8
 madd ACC, k4angle, anglepower4 ; + k4 a^7
 madd ACC, k3angle, anglepower4 ; + k3 a^5
 loi 6.283185 ;
 madd ACC, \sincos, I ; + k1 a
 madd \sincos, k2angle, anglepower8 ; + k5 a^9
 .endm

;//--
;// QuaternionToMatrix - Converts a quaternion rotation to a matrix
;// Thanks to Colin Hughes (SCEE) for that one
;//
;// Note: ACC and I registers are modified
;//--
 .macro QuaternionToMatrix matresult,quaternion

 mula.xyz ACC, \quaternion, \quaternion ; xx yy zz

 loi 1.414213562
 muli vclsmlftemp, \quaternion, I ; x sqrt2 y sqrt2 z
sqrt2 w sqrt2

 mr32.w \matresult[0], vf00 ; Set rhs matrix
line 0 to 0
 mr32.w \matresult[1], vf00 ;
 mr32.w \matresult[2], vf00 ; Set rhs matrix
 move \matresult[3], vf00 ; Set bottom line to
0 0 0 1

 madd.xyz vcl_2qq, \quaternion, \quaternion ; 2xx 2yy
2zz
 addw.xyz Vector111, vf00, vf00 ; 1 1
1 -

42 Appendix A: Macro Examples

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

 opmula.xyz ACC, vclsmlftemp, vclsmlftemp ; 2yz 2xz
2xy -
 msubw.xyz vclsmlftemp2, vclsmlftemp, vclsmlftemp; 2yz-2xw 2xz-2yz
2xy-2zw -
 maddw.xyz vclsmlftemp3, vclsmlftemp, vclsmlftemp; 2yz+2xw 2xz+2yz
2xy+2zw -
 addaw.xyz ACC, vf00, vf00 ; 1 1
1 -
 msubax.yz ACC, Vector111, vcl_2qq ; 1 1-2xx
1-2xx

 msuby.z \matresult[2], Vector111, vcl_2qq ; - -
1-2xx-2yy -
 msubay.x ACC, Vector111, vcl_2qq ; 1-2yy 1-2xx
1-2xx-2yy -
 msubz.y \matresult[1], Vector111, vcl_2qq ; - 1-2xx-
2zz - -
 mr32.y \matresult[0], vclsmlftemp2
 msubz.x \matresult[0], Vector111, vcl_2qq ; 1-2yy-2zz -
- -
 mr32.x \matresult[2], vclsmlftemp2
 addy.z \matresult[0], vf00, vclsmlftemp3
 mr32.w vclsmlftemp, vclsmlftemp2
 mr32.z \matresult[1], vclsmlftemp
 addx.y \matresult[2], vf00, vclsmlftemp3
 mr32.y vclsmlftemp3, vclsmlftemp3
 mr32.x \matresult[1], vclsmlftemp3

 .endm

;//--
;// QuaternionMultiply - Multiplies "quaternion1" and "quaternion2",
;// and puts the result in "quatresult".
;// Thanks to Colin Hughes (SCEE) for that one
;//
;// Note: ACC register is modified
;//--
 .macro QuaternionMultiply quatresult,quaternion1,quaternion2
 mul vclsmlftemp, \quaternion1, \quaternion2 ; xx yy zz ww

 opmula.xyz ACC, \quaternion1, \quaternion2 ; Start
Outerproduct
 madd.xyz ACC, \quaternion1, \quaternion2[w]; Add w2.xyz1
 madd.xyz ACC, \quaternion2, \quaternion1[w]; Add w1.xyz2
 opmsub.xyz \quatresult, \quaternion2, \quaternion1 ; Finish
Outerproduct

 sub.w ACC, vclsmlftemp, vclsmlftemp[z] ; ww - zz
 msub.w ACC, vf00, vclsmlftemp[y] ; ww - zz - yy
 msub.w \quatresult, vf00, vclsmlftemp[x] ; ww - zz - yy -
xx
 .endm

 Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor 43

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Appendix B: Detailed Information Regarding Loops in the VCL
Preprocessor

Pipelining and VCL

When the “--LoopCS” directive is used, the VCL preprocessor will attempt to unroll and pipeline back to
the start any block of code that ends with a conditional branch.

The VCL preprocessor analyzes the sequence of instructions and determines what the best size for the
loop would be. A simplistic calculation for the loop size is:

best_size = max (number_upper_instructions, number_lower_instructions,
sum_throughput_p, sum_throughput_q)

The actual calculation is actually more involved, particularly due to issues like IALU instructions placing (with
respect to the branch) and the possibility of circular dependency chains in the instruction sequence.

Note: The VCL preprocessor currently relies on the user to identify memory store/load sequences. It does
so by the use of tags. (Refer to “Memory Aliasing and Instructions Reordering” on page 9 for more details.)

For a typical renderer, the usual circular chain is of the form:

IADDIU ptr, ptr, sizeof
IBNE ptr, end_ptr, loop

Or:

IADDI count, count, -1
IBNE count, vi00, loop

These cases aren’t long compared to the size of the loop. (The rest of a typical renderer pulls data out of
memory, processes it, then writes it back to memory. However, it does not cross a loop iteration
boundary.)

For other types of code loops (such as physics dynamics calculations on strings), where the output from
one loop iteration is an input to the next, and the length of the calculation is the same as the overall length
of the loop, pipelining will not greatly improve performances without a modification of the algorithm. Such a
modification could be to process multiple strings at once.

After analyzing the code, the VCL preprocessor tries to schedule it so that it fits into a block that is of size
greater or equal to 0, but smaller than the loop size. It does so by wrapping instructions off the end and
back to the start. The number of times an instruction is wrapped around the loop will determine the stage
number to which it belongs.

In short:

● In linear mode (non-looped), VCL schedules in Z instructions.

● In loop mode, it schedules in Z modulo n, where n equals best_size + current optimization phase.

● Software pipelining where the branch is at the end of the critical path will not be optimized greatly by
VCL.

44 Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Study the following example, which will be referred to later in this appendix:

vrt_loop:
 --LoopCS 10,10
 LQI vrt, (in_p++) ; Load vertex

 MUL acc, mat[0], vrt[x] ; Transform vertex
 MADD acc, mat[1], vrt[y] ;
 MADD acc, mat[2], vrt[z] ;
 MADD camv, mat[3], vf00[w] ;

 DIV q, vf00[w], camv[w] ; Perspective correction
 MUL screenv, camv, q ;

 FTOI4 fixpt, screenv ; Convert to GS format

 SQI fixpt, (out_p++) ; Save the vertex

 IADDI count, count, -1 ; Next vertex...
 IBNE count, vi00, vrt_loop ;

The following is a typical sequence of instructions for a loop, where the numerals 1 to 9 denote blocks of
instructions that are grouped by pipeline stages. Execution in the order 1, 2, 3, 4, 5, 6, 7, 8, 9 is equivalent
to one iteration of the loop.

Figure 1

1

2

3

4

5

6c

7

8

9m

“c” denotes the stage for the conditional.. In the example above, it is highly likely that the conditional will be
at stage 1, since it is not dependent on much else in the code. “m” is the last stage. In a typical renderer,
this would often correspond to the color calculations.

As pipeline execute happens:

Figure 2

Prologue 1 P1 starts

 2 1 P2 starts, P1 is at stage 2

 3 2 1 P3 starts, P2 is at stage 2, P3 is at stage 3

 4 3 2 1 Etc…

 5 4 3 2 1

 6c 5 4 3 2 1

 7 6c 5 4 3 2 1

 8 7 6c 5 4 3 2 1

MainLoop 9 8 7 6c 5 4 3 2 1 Main body of the loop

Epilogue 9 8 7

 9 8

 9

 Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor 45

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

If the conditional is at stage C (here, 6), then stages 1 to C-1 will miss-execute, i.e. in the main loop, the
pipeline runs C-1 stages ahead of the conditional. But when the condition is found to be true, the VCL
preprocessor will only complete the processing for valid stages that are in the graph above 9, 8-9, and 7-8-
9 (epilogue part).

“--LoopCS n,m” Directive

n (Minimum Number of Loops)

For small loop counts, there are many instructions that are associated with pipeline stages ahead of the
conditional. To get better performance for a small count (n greater or equal to 1 but smaller than M-C),
once the conditional in the loop is encountered, the VCL preprocessor can jump to a special case to
complete the calculations on the required pipeline stages for this count.

Following is a modified version of the above diagram:

Figure 3

 1

 2 1

 3 2 1

 4 3 2 1

 5 4 3 2 1

A 6c 5 4 3 2 1

B 7 6c 5 4 3 2 1

C 8 7 6c 5 4 3 2 1

MainLoop 9 8 7 6c 5 4 3 2 1

 9 8 7

 9 8

 9

If the code has a small minimum count, such as n = 1, it is possible for the code to exit at “A” and go to a
special-case epilogue (EPI_A). The steps that have already taken place are:

Figure 4

 1

 2 1

 3 2 1

 4 3 2 1

 5 4 3 2 1

A 6c 5 4 3 2 1

If the condition at stage 6 is found to be true, the following will be executed:

Figure 5

EPI_A 7

 8

 9

46 Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Similarly for n = 2, a special epilogue may be created for the following (EPI-B):

Figure 6

EPI_B 8 7

 9 8

 9

In the case above, having nine stages would require the creation of nine special epilogues, which is a lot of
code generation. However, if the VCL preprocessor is told –via the “Minimum Number of Loops”- that
there will always be, for example, three iterations, then the special case codes EPI_A and EPI_B as well as
the two conditionals A and B may be removed altogether.

Up to at least version 1.3, the VCL preprocessor does not reschedule instructions across conditionals. So
conditional removals by ways described above will most certainly result in better code optimization.

m (Slop Count)

Referring to the tables above, it can be seen that, in the main loop, the VCL preprocessor will execute
some stages ahead of the conditional (in the example, stages 1 to 5). If these contain instructions with side
effects (like memory stores and XGKick), this could result in data corruption, since by the time the
conditional takes place, such instructions would have already executed.

In the following table, “*” denotes stages containing an instruction with side-effects, and “f” denotes the first
instruction containing instructions with side-effects. “c” denotes the conditional stage, and “m” the last
stage.

Figure 7

1
2f*
3
4*
5
6c
7*
8

9m

If the first side effect is at stage 2, then stage 2 will have miss-executed a maximum count greater or equal
to 0, but smaller than c-f (6-2=4). This is acceptable if extra padding is provided at the end of the store
buffer. The number of available padding slots is specified with the Slop Count.

If, for example, m=1, then the above case would generate incorrect code, since c-f=4.

However, for the following case, the generated code would be correct, since c-f=1.

Figure 8

1
2
3
4

5f*
6c
7*
8

9m

 Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor 47

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

If no side-effect stages can be mis-executed, then the Slop Count must be set to 0. Note that this will,
however, result in real constraints on VCL code generation.

.rawloop / .endrawloop

For regular loops, the VCL preprocessor will analyze the loop and decide how to stage the instructions and
reschedule them accordingly. Then compatible prologues and epilogues will be created around the loop’s
main body.

In some cases, however, you may already know what the stages are like, and simply want the VCL
preprocessor to unroll them and create the prologue and epilogue. Use raw loops for this..

The regular loop shown in “Pipelining and VCL” would be similar to the following example, using raw loops:

.rawloop

vrt_loop:
 --LoopCS 10,10

 2..MADD acc, mat[2], vrt[z] ; Rotate vertex .. 2
 = 1..LQI vrt, (in_p++) ; Load vertex, increment pointer

 2..MADD camv, mat[3], vf00[w] ; Translate rotated vertex
 = 3..MOVE ocamv, camv ; Save copy of camera space coordinate

 NOP
 = 5..SQI fixpt, (out_p++) ; Save out GS-format vertex

 4..FTOI4 fixpt, screenv ; Convert screen coordinate to GS-format
 = 1..IADDI count, count, -1 ; Decrement loop counter

 1..MUL acc, mat[0], vrt[x] ; Rotate vertex .. 0
 = NOP

 1..MADD acc, mat[0], vrt[y] ; Rotate vertex .. 1
 = 1..IBNE count, vi00, vrt_loop ; Reached the end?

 3..MUL screenv, ocamv, q ; Do perspective divide
 2..DIV q, vf00[w], camv[w] ; Start perspective divide calculation
.endrawloop

The “<n>..” instruction syntax tells the VCL preprocessor in which stage of the loop the instruction
belongs, so it can generate proper prologues and epilogues.

In raw mode, “=” may be used as a “line continue” character, as long as it is the first non-white character
on a lower-instruction line. This permits better comments placement. If not used, upper and lower
instructions must be placed on the same line, much like regular VSM code.

The VCL preprocessor will create the prologue by first taking the instructions with a “1…” suffix, then the
instructions with a “2…” suffix, and so on.

Prologue and epilogue instructions are not rescheduled in the case of a raw loop, as they are for regular
loop unrolling. Therefore, this may result in sub-optimal code. However, this is necessary for cases where
the code needs to run on VU0 in parallel with code on the EE, without synchronization.

48 Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

 Appendix C: VCL Tips and Common Mistakes 49

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

Appendix C: VCL Tips and Common Mistakes

This appendix is a handy compilation of common VCL mistakes often encountered by beginning VCL
developers.

Preprocessor Errors

When using either GASP or the C preprocessor, make sure you have permissions to create temporary files.
Any preprocessor error will halt VCL.

Reordering of Instructions

When converting 2-stream code to 1-stream VCL code, make sure to bring back branch-delay-slot
instructions before the branch or jump instruction. Be also careful with instruction groups like divq/mulq,
clip/fcand, FMAC/fsand, etc.

Working Registers

Make sure to give VCL enough registers to work with, else the generated code might not be as optimized
as it could otherwise, or worse VCL might not be able to generate code at all. (See “Register Availability”
on page 4 for more details.)

Input and Output Registers

Make sure to specify input and output variables in the code. Not specifying input will result in a VCL error,
but not specifying output will simply result in instruction pruning, and hence will not output expected code.
(See “Data Tracking” and “Set Before Use” on page 12 for more details.)

Entry Points

VCL expects at least one entry point. Therefore, “--enter/--endenter” must be specified at least once.

Exit Points in Code

Make sure to use “--exit/--endexit” and “--cont” properly. Although both will stop VU execution, “--exit/--
endexit” is understood by VCL as meaning that code preceding and following are not related, so no data
dependency will be performed. In contrast “--cont” can be thought of as a pause operation, and does not
offer the same data dependency breaking feature.

Improperly swapping the 2 might not generate an error, but the code will not operate as intended.

Conditional Branching and Loop Unrolling

VCL does not support conditional branching within a loop that is to be unrolled, but will not give a warning
about it, so sub-optimal code might be inadvertently generated.

Number Literals

Number literals, as used with instructions like LOI, may be either specified as float or integers. But to be
recognized as an integer, it must be specified as a hexadecimal value. Values like 1 will be understood as

50 Appendix C: VCL Tips and Common Mistakes

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

1.0, and therefore converted as 0x3F800000 (floating-point representation for 1.0). (See “Number Literals
Peculiarities” on page 4 for more details.)

Memory Management

VCL does not manage VU memory in any way, and does not implicitly check for memory aliasing. To avoid
memory aliasing issues, related instructions must be explicitly tagged, and other common memory
management issues must be managed by the programmer. (See “Memory Aliasing and Instructions
Reordering” on page 9 for more details.)

Variable Names

Because a given VU instruction either operates on an integer or floating-point register, VCL allows the same
variable name to be used for an integer and a floating-point variable. This can lead to confusion for the
programmer, so this feature must be used with caution. (See “Floating-Point and Integer Variable Naming”
on page 3 for more details.)

Broadcast Instructions and Variable Names

Using the new syntax, instructions accepting a broadcast field will look for a field identifier at the end of the
line, as such:

MADD acc, matrix1, inputvertex[y]

In any other cases, suffixing a variable name with “[x]”, “[y]”, “[z]” or “[w]” will not be considered a broadcast
identifier, and the suffix will be merged with the name itself to form a new variable name. Therefore, in such
cases, names like “color” and “color[w]” would refer to different variables.

(See “Broadcast Instructions” on page 6 for more details.)

Long Dependency chains

Leaving long dependency chains of the form:

MUL register,register,register ; register.xyzw modified
MUL.xyz register,register,register ; only register.xyz modified
MUL.xyz register,register,register ; only register.xyz modified
MUL.xyz register,register,register ; only register.xyz modified
MUL.xyz register,register,register ; only register.xyz modified
MUL.xyz register,register,register ; only register.xyz modified
MUL register,register,register ; register w also used
MUL register,register,register ; register w also used

Using a different register at each stage is impossible, since the 'w' value will be discarded. The internal
move generator is cautious at the moment, so VCL will not explicitly separate the W component from the
rest.

Typos and Instruction Pruning

Typos can be common when coding. These are easily caught if they are within an instruction name, but if
they are in a variable name, finding them might prove to be tricky if they don’t generate errors like “use
before set”. Sometimes, variable-name typos will result in VCL pruning otherwise valid code.

Looking carefully at the output from VCL can therefore help catch this kind of mistake.

 Appendix C: VCL Tips and Common Mistakes 51

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

EFU Instructions Usage

EFU instructions are fine when used sparingly, however their long latency and throughput compared to Q-
related instructions mean they will most likely be the limiting factor within loops. So they should be used
with caution.

Register with 1s

It is possible to create a register with 1s by doing:

MAX Vector1111, vf00, vf00[w]

Or, using lower instructions:

RINIT R, vf00[x]
RGET Vector1111, R

Dot Product (Inner Product)

If you have a float register containing (1.0, 1.0, 1.0, 1.0), it is possible to calculate the dot product of 2
vectors by doing the following:

MUL temp, VectorA, VectorB
ADD.x acc, temp, temp[y]
MADD.x DotProduct, Vector1111, temp[z]

But because inside the body of a loop throughput, not latency, is sometimes the limiting factor, calculating
a dot product in the following way might be useful:

MUL temp, VectorA, VectorB
ADD.x acc, temp, temp[y]
ADD.x DotProduct, temp, temp[z]

This is the case because VCL is free to rearrange register assignment for temp.x while the dot product
calculation is in flight, whereas in the former code snippet, VCL is prohibited from using ACC.x while
calculations are taking place.

52 Appendix C: VCL Tips and Common Mistakes

© Sony Computer Entertainment America PlayStation®2 VCL™ Preprocessor Release 1.4x

This page intentionally left blank.

	PLAYSTATION 2 VU COMMAND LINE PREPROCESSOR RELEASE 1.4x - USER'S MANUAL
	May 2004

	Table of Contents
	About This Manual
	Changes Since Last Release
	Related Documentation
	Typographic Conventions

	Overview
	What is the VU Command Line™ (VCL) Preprocessor?
	Merging of Upper and Lower Instructions in One Code Stream
	Syntax Simplification
	Variable Naming and Registers Allocation
	Instruction Scheduling
	Macro Usage

	Syntax Simplification
	Merging of Upper and Lower Instructions
	Variable Naming and Registers Allocation
	Floating-Point and Integer Variable Naming
	Special Variable Name “i”

	Number Literals Peculiarities
	Register Availability
	Instruction Simplification
	Floating-Point Register Fields Specification
	Broadcast Instructions

	Instruction Scheduling and Data Tracking
	Instruction Scheduling
	Loop Unrolling
	n (Minimum Number of Loops)
	m (Slop Count)

	Instructions Ordering
	Memory Aliasing and Instructions Reordering
	Peculiarities with XGKick
	Clip Instruction

	Branch Delay Slots
	Code Removal
	Floating-Point Field Pruning

	E, D, and T Bits
	Load and Store Offsets
	Data Tracking
	Set Before Use

	Branching
	Labels
	Calls to Functions
	Functions Calling Sub-Functions
	Jump Tables
	Recursive Functions

	Integration of VSM Code Within the VCL Code
	.vsm / .endvsm and .raw / .endraw
	.rawloop / .endrawloop

	Macros and Other Preprocessor Usages
	Using the C Preprocessor
	Using Macros with the C Preprocessor
	Using gasp
	Using Macros with gasp
	Issues with gasp
	Examples of Preprocessor Usage

	Command-Line Parameters
	Command-Line Syntax
	–c
	-C
	–d
	-e
	-f
	–g
	–g+
	–G
	–h
	–I<includefilepath>
	<inputfilename>
	-j<outputfilename.s>
	-K
	–L
	–m
	–M
	–n
	–o<outputfilename.vsm>
	–P
	-q
	-s
	-S
	–t<seconds>
	-u<string>
	–Z

	Keywords
	.global symbolname
	.init_vi VIxx <, VIxx …>
	.init_vf VFxx <, VFxx …>
	.rem_vi VIxx <, VIxx …>
	.rem_vf VFxx <, VFxx …>
	.init_vi_all
	.init_vf_all
	.mpg vucodeoffset
	.name progname
	.raw / .endraw
	.rawloop / .endrawloop
	.syntax old | new
	.vsm / .endvsm
	--barrier
	--cont
	--enter / --endenter
	in_vi varname (VIxx)
	in_vf varname (VFxx)
	in_hw_acc acc / in_hw_clip clip / in_hw_i i / in_hw_p p / in_hw_q q / in_hw_r r / in_hw_status status
	--exit / --endexit
	--exitm macroname / --endexit
	out_vi varname (VIxx)
	out_vf varname (VFxx)
	out_hw_acc acc / out_hw_clip clip / out_hw_i i / out_hw_p p / out_hw_q q / out_hw_r r
	--LoopCS n,m
	--LoopExtra n
	--LoopAbs n

	Appendix A: Macro Examples
	Appendix B: Detailed Information Regarding Loops in the VCL Preprocessor
	Pipelining and VCL
	“--LoopCS n,m” Directive
	n (Minimum Number of Loops)
	m (Slop Count)
	.rawloop / .endrawloop

	Appendix C: VCL Tips and Common Mistakes
	Preprocessor Errors
	Reordering of Instructions
	Working Registers
	Input and Output Registers
	Entry Points
	Exit Points in Code
	Conditional Branching and Loop Unrolling
	Number Literals
	Memory Management
	Variable Names
	Broadcast Instructions and Variable Names
	Long Dependency chains
	Typos and Instruction Pruning
	EFU Instructions Usage
	Register with 1s
	Dot Product (Inner Product)

