
PS2 Linux Programming Using SPS2 – Tutorial 2

Introduction

This tutorial will provide a commentary on the file dma_triangle.c that is used to draw
3 animated triangle primitives using the PS2 Linux Development Kit and the SPS2
direct access module. The Direct Memory Access Controller (DMAC) will be used to
transfer data to the graphics processor. Some prerequisite knowledge fundamental to
the understanding of the program will be provided. The tutorial is written for version
0.3.0 of SPS2. Thanks go to Jonathan Hobson (kazan) and Steven Osman (sauce) for
their assistance in the production of this tutorial.

The Direct Memory Access Controller (DMAC)

Figure 1 shows the main internal data paths that exist within the PS2. The DMAC will
be discussed here since it is vital to maximising the performance of the PS2. The
DMAC is used to handle data transfers between main memory and each of the
processors. It can also be used to transfer data between main memory and the
scratchpad memory (SP) of the EE Core.

EE Core VU0 VU1

I$ D$ SP VIF0 VIF1

128-bit Data Bus

GIF GS

Path 1

Path 3

Path 2

DMAC Main
Memory

Figure 1

In terms of performance, the DMAC bus can transfer data at a maximum rate of
2.4Gb/sec. This can be compared with the AGPx4 bus that has a bus bandwidth of
1.1Gb/sec and the AGPx8 bus that is 2.1Gb/sec.

Due to the design of the PS2, it is only possible to transfer data using the DMAC if
the physical address of the memory to be transferred is know. Normal program
variables and dynamically allocated memory (in an operating system such as Linux)

 1

use virtual addresses which are constant for a given program, but the physical address
of these variables and memory may change as the operating system pages them in,
out, and around physical memory. This leads to one of the main purposed of the SPS2
module, which is the allocation of un-swappable physical memory that is guaranteed
to have a constant physical address. In essence this allows the programmer to used the
power and performance of the DMAC whilst developing applications under PS2
Linux.

Un-swappable memory is allocated using the sps2Allocate() function. This function
takes 3 parameters, the first being the amount of memory to be allocated in bytes. It is
recommended that this value be a multiple of 4096 but any value supplied will be
rounded up to the next highest 4096 boundary. The second parameter is a set of
behaviour flags. SPS2_MAP_BLOCK_4K must always be used since it is the only
block size currently supported. Optionally this flag may be bitwise ORed with
SPS2_MAP_UNCACHED or SPS2_MAP_CACHED. If neither of these flags is
used, the memory will be cached by default. Cached memory can be faster than un-
cached memory, but requires the use of the sps2FlushCache() function before the
DMAC Transfer is started so that data that has been modified in the cache is written
back to memory. The final parameter is the device descriptor that was received from
sps2Init().

sps2Allocate() returns either a pointer to an sps2Memory_t structure or null if there is
not enough memory in the system for the request. The sps2Memory_t structure
contains information about the position and organisation of the allocated memory but
the only field that is of concern is pvStart. This, as the name suggests, is a pointer to
the start of the allocated memory, and is a virtual address that can be used in the same
manner as a normal pointer. pvStart is of type void and should be cast to a pointer of a
suitable type before use. Once the allocated memory is no longer required, it should
be release back to the operating system by passing the sps2Memory_t structure to the
sps2Free() function.

Data to be shifted by the DMAC needs to be properly aligned in memory – the start
address of the data must be aligned on a 16-byte (qword) boundary. Thus, the starting
address of any memory to be transferred must always meet the condition ((Address &
0xF) == 0). Also, the data is transferred in chunks of 1 qword, so the minimum
amount of data that can be transferred is 16-bytes. Note that sps2Allocate() will return
a pointer which is properly aligned.

There are 4 different modes of DMAC transfer: Normal, source chain, destination
chain, and interleave. In this tutorial only normal mode transfers will be considered.
The DMAC transfer process is controlled by a number of 32-bit registers within the
EE core. Some of these registers have multiple values packed together into their bits.
The channel control register (CHCR), the memory address register (MADR), and the
quad word count register (QWC) are all needed to set up a normal mode DMAC
transfer. SPS2 has unions and structures to access these registers and they are listed
below for clarity. The relevant parts of these unions will be described as required.

typedef union Dn_CHCR {
 sps2uint32 i32;

 2

 struct {
 unsigned int DIR :1;
 unsigned int _PAD1 :1;
 unsigned int MOD :2;
 unsigned int ASP :2;
 unsigned int TTE :1;
 unsigned int TIE :1;
 unsigned int STR :1;
 unsigned int _PAD2 :10;
 unsigned int TAG_PCE :2;
 unsigned int TAG_ID :3;
 unsigned int TAG_IRQ :1;
 } s;
} Dn_CHCR_t;

typedef union Dn_MADR {
 sps2uint32 i32;

 struct {
 unsigned int ADDR :31;
 unsigned int SPR :1;
 } s;
} Dn_MADR_t;

typedef union Dn_QWC {
 sps2uint32 i32;

 struct {
 unsigned int QWC :16;
 unsigned int _PAD1 :16;
 } s;
} Dn_QWC_t;

The DMAC has ten separate channels for transferring data between the various
processors and memory within the PS2. Transfer to the GIF has a channel ID number
of 2 and the register names used for this channel are in the form EE_D2_XXXX
where EE represents an EE core register, D2 refers to the channel ID number and
XXXX is the relevant control register to be accessed. Page 42 of the EE users manual
has a complete listing of all the DMAC channels in the PS2.

Normal mode transfer to the GIF moves a continuous section of data from main
memory to the GIF over channel 2. All that is required for the transfer is to set up 3
registers: EE_D2_QWC, EE_D2_MADR and EE_D2_CHCR.

 3

The first register QWC (EE Users Manual page 79) is the number of qwords to be
transferred.

The second register MADR (EE Users Manual page 75) is the start address in
memory of the data to be transferred. This address must be the physical address of the
memory where the data resides. To get this physical address a pointer to the start of
the memory (a virtual memory address pointer) along with a pointer to the
sps2Memory_t structure is passed to the sps2GetPhysicalAddress() function which
will return the physical address of the memory. The ADDR field of the MADR
register is then set to this physical address. The SPR field of the register should
remain at zero.

The Final register is the channel control register, CHCR, (EE Users Manual page 74).
This register has a number of fields; but only two of them, MOD and STR are of
interest at this time. The MOD field tells the DMAC what mode of transfer is
required. In this case MOD is set to CHCR_MOD_NORMAL, which is normal mode
transfer. Setting the STR bit of CHCR to one will start the DMAC transfer. The
instant this data is written into the CHCR register the DMA transfer over channel 2 is
started and the specified data is transferred to the GIF.

It is necessary to wait for the DMAC transfer to complete before any more processing
is done, and this is achieved by calling the function sps2WaitForDMA(2,
iSPS2Descriptor) . This function will not return until the STR bit of EE_D2_CHCR
has been set back to 0 by the DMAC.

While normal mode transfers are nice and simple, they are not as powerful as some of
the other methods such as source chain mode transfers. Also, SPS2 introduces an
added complication in that the memory it allocates is only physically contiguous in 4k
chunks. This means that it is only possible to send up to 4kBytes of data at a time
using normal mode transfer. It is possible to circumvent this limitation using the other
modes of transfer that the DMAC has available, but these techniques are beyond the
scope of the present tutorial.

The Program Code

Now that the DMAC process has been discussed it is possible to understand the
example code provided.

An integer (iFrame) is used to count the number of frames that have passed, this value
being used to create some nice animation effects to make the graphics more
interesting. A 9x2 array (aVertices) holds the vertex data of three triangles that are to
be drawn on screen. Note that the number of vertices to be drawn is calculated and
stored in the iVertexCount variable that will be used to configure the primitive data.

Moving to the main() function the following variables are declared: iSPS2Desciptor
which is the handle to be used for SPS2; pMemory which is a pointer to the memory
structure used for allocation; iQWC which will contain the number of qwords of data
to be transferred; and chcrvalue which is used to control the DMAC transfer process.

 4

The MOD field of chcrvalue is set to CHCR_MOD_NORMAL and the STR bit is set
to 1. Remember that the DMAC transfer will not commence until this value is written
into the CHCR register.

After the SPS2 module is initialised, 4096 bytes of memory are allocated in un-
swappable space using sps2Allocate(). This memory will be used to store the graphics
packet which will be DMAC transferred to the GIF. Note that the memory is
uncached at this time for simplicity. Finally, before the main render loop is entered,
the screen is initialised with sps2UscreenInit().

Before the render loop is discussed it is best to review the LoadTriangleData()
function.

Building the Primitive Data

The LoadTriangleData() function takes a pointer to the start of the allocated memory
which is cast to sps2GIFTag_t and sps2GIFPackedRegister_ types as appropriate. As
in tutorial 1 the GIFTag is configured along with the primitive data and the complete
packet is stored in the allocated memory. A few points to note about this function:

1. The graphics packed consists of one GIFTag followed by primitive data.

2. The primitive data consists of 12 qwords, each vertex is described by two

registers (RGBAQ and XYZ2) and there are 6 vertices. NLOOP = 6 and NREG
= 2 in the GIFTag.

3. In order to make the graphics a bit more interesting, every time this function is

called (once per frame) the vertex colours and positions are changed a little to
provide the animation effect. This effect is only “for show” and is not critical to
the understanding of this tutorial.

4. The number of qwords written to memory is returned by this function.

The Render Loop

At the start of the render loop the buffer to be drawn into is cleared to a dark purple
colour. The graphics packet is then constructed in allocated memory, the qword count
being returned. The EE_D2_QWC register is set to the number of qword to be
transferred. The memory address pointer which points to the start of the memory to be
transferred is set into the EE_D2_MADR register. Note that this is a physical address
which is obtained from the sps2GetPhysicalAddress() function. The DMA transfer is
started by writing to the channel control register with the previously set up data. The
render loop then waits for the DMAC process to complete, then swaps the display and
draw buffers once the monitor has completed scanning out the previous frame.

 5

Conclusions

This tutorial has reviewed the process necessary to access and use the DMAC within
the PS2. Great care must be taken when accessing the DMA controller directly and it
is important to check that code is correct before being executed. Even the slightest
mistake can cause the PS2 to crash and a complete reboot will probably be required.
In order to get the best performance out of the PS2, low level programming such as
that described in this tutorial is required, but accessing this power does require the
programmer to be vigilant.

Dr Henry S Fortuna
University of Abertay Dundee
h.s.fortuna@abertay.ac.uk

 6

mailto:h.s.fortuna@abertay.ac.uk

/*
 Copyright (C) 2002 Terratron Technologies Inc. All Rights Reserved.
 Author: Steven Osman, Morten Mikkelsen, Lionel Lemarie

 This file is part of sps2.

 Before using this file you MUST agree to the license agreement in
 the file LICENSE provided with this package.

 For more information visit:
 http://www.playstation2-linux.com/projects/sps2/
 http://window.terratron.com/~sosman/ps2linux/
 http://www.terratron.com/

 7/12/2003 - Sauce
 Initial version
*/
#include <stdio.h>

#include <sps2lib.h>
#include <sps2tags.h>
#include <sps2util.h>
#include <sps2regstructs.h>

int iFrame=0;
typedef int vertex_t[2];
vertex_t aVertices[]={
 {-150, -150}, {-150, -50}, { -50, -100}, // 1st triangle
 { 150, -150}, { 150, -50}, { 50, -100}, // 2nd triangle
 { 50, 150}, { 50, 50}, { -50, 100}, // 3rd triangle
};

int iVertexCount=sizeof(aVertices)/sizeof(vertex_t);

/**
 * This function will take the iVertexCount vertices defined in the
aVertices
 * array and prepare them, along with an appropriate GIFTag, to be
displayed.
 * pvBase points to a buffer for the data
 * returns the number of qwords put into pvBase
 */
int loadTriangleData(void *pvBase) {
 sps2GIFTag_t *pGIFTag=(sps2GIFTag_t *) pvBase;
 sps2GIFPackedRegister_t *pRegister=
 (sps2GIFPackedRegister_t *) ((int) pvBase+sizeof(sps2GIFTag_t));
 int iVertex, iScale;

 // Prepare the GIF tag
 pGIFTag->i128=0; // Blank it out
 pGIFTag->s.NLOOP=0; // 0 entries. We'll increment as we add entries
 pGIFTag->s.PRE=1; // We are providing a valid PRIM value
 pGIFTag->s.EOP=1; // End of packet -- draw me please!
 pGIFTag->s.PRIM=11; // 3 = triangle | 8 = gourard shading
 pGIFTag->s.FLG=GIF_FLG_PACKED; // We're using the packed format for data
 pGIFTag->s.NREG=0; // Start off with zero registers, increment as we
 // populate the descriptions

 // Add a register. It will be an RGBAQ register
 SPS2_SET_GIF_REG(*pGIFTag, pGIFTag->s.NREG++, GIF_REG_RGBAQ);
 // Add another register. It will by an XYZ2 register
 SPS2_SET_GIF_REG(*pGIFTag, pGIFTag->s.NREG++, GIF_REG_XYZ2);

 // Loop through all vertices
 for (iVertex=0;iVertex<iVertexCount;iVertex++) {

 7

 pGIFTag->s.NLOOP++; // Increment the entry count in the tag

 pRegister->i128=0; // Blank out this value
 pRegister->RGBAQ.s.A=0x7f; // Alpha = 127
 // Pick R, G, and B values just based on the vertex number and frame
 pRegister->RGBAQ.s.R=(iVertex % 3==0 ? iFrame & 0x7f : 0);
 pRegister->RGBAQ.s.G=(iVertex % 3==1 ? iFrame & 0x7f : 0);
 pRegister->RGBAQ.s.B=(iVertex % 3==2 ? iFrame & 0x7f : 0);

 // Increment register data pointer
 pRegister++;

 pRegister->i128=0; // Blank out this value
 iScale=1+(iFrame & 31); // We'll scale the points by half these amounts
 pRegister->XYZ2.s.X=(2048 << 4) + ((aVertices[iVertex][0]*iScale) >> 1);
 pRegister->XYZ2.s.Y=(2048 << 4) + ((aVertices[iVertex][1]*iScale) >> 1);
 pRegister->XYZ2.s.Z=128;

 // Increment register data pointer
 pRegister++;
 }

 // Compute the difference between our register data pointer and our
initial
 // pointer. This is the byte count of data we put in. Shifted right four
 // times gives us the qword count
 return ((int) pRegister -(int) pvBase) >> 4;
}

/**
 * This is the main function of our tutorial. It will perform some simple
 * initialization and then set up a small loop to repeatedly draw our
 * triangles.
 */
int main() {
 int iSPS2Descriptor; // The handle we use for sps2
 sps2Memory_t *pMemory; // Will store information about memory we
allocate
 int iQWC;
 Dn_CHCR_t chcrValue; // This is used to control the DMA transfer

 // chcr is used to control, start, stop DMA transfers.
 // Since we need the same chcr value each time we initialize this
 // particular dma transfer, we may as well prepare the value first.
 chcrValue.i32=0; // Blank everything out
 chcrValue.s.MOD=CHCR_MOD_NORMAL; // We'll do a "normal" dma transfer
 chcrValue.s.STR=1; // STR=1 = start transfer

 iSPS2Descriptor=sps2Init(); // Initialize sps2

 // We'll allocate 4096 bytes in chunks of 4K (i.e. one single chunk).
 // We want to use this memory uncached so that writes to the memory are
 // immediately committed.
 pMemory=sps2Allocate(4096, SPS2_MAP_BLOCK_4K | SPS2_MAP_UNCACHED,
 iSPS2Descriptor);

 // Initialize the screen. Zero tells sps2UScreenInit to exit gracefully
 // when it receives a signal.
 sps2UScreenInit(0);

 while (++iFrame) {
 // Clear the new screen. Let's make it a dark purple background.
 sps2UScreenClear(0x40, 0, 0x40);

 // Load our polygon data. This function returns the number of
 // qwords (QWC = qword count. qword = 16 bytes)

 8

 9

 iQWC=loadTriangleData(pMemory->pvStart);

 // Tell DMA we'd like to transfer iQWC qwords
 *EE_D2_QWC=iQWC;

 // Get the physical address of our data and pass it to DMA
 *EE_D2_MADR=sps2GetPhysicalAddress(pMemory->pvStart, pMemory);

 // Start the DMA transfer
 *EE_D2_CHCR=chcrValue.i32;

 // Wait for the DMA transfer to finish
 sps2WaitForDMA(2, iSPS2Descriptor);

 // Swap displays now that we're done
 sps2UScreenSwap();
 }

 // Shut down the screen
 sps2UScreenShutdown();

 // Free the memory
 sps2Free(pMemory);

 // and close sps2
 sps2Release(iSPS2Descriptor);
 return 0;
}

	The Direct Memory Access Controller (DMAC)
	Figure 1

	The Program Code
	The Render Loop
	Conclusions

