

SPS2

A Development Library for
Linux (for PlayStation 2)

Steven “Sauce” Osman

Terratron® Technologies Inc.

Copyright © 2002, 2003 Terratron Technologies Inc.

 SPS2 Version 0.4.0

Table of Contents

Table of Contents .. 2
Introduction .. 4
License Agreement.. 5
Acknowledgements ... 6
History of Changes .. 7

Version 0.2.0 ... 7
Version 0.2.0a ... 7
Version 0.3.0 ... 7
Version 0.3.0a ... 7
Version 0.4.0 ... 7

Programming with SPS2 ... 8
SPS2 Files and Directories.. 9
Installing and Loading SPS2 ... 10

Before You Build the Kernel Module ... 10
Building the Kernel Module ... 10
Loading the Kernel Module ... 10
Unloading the Kernel Module.. 10
Removing SPS2 From Your System... 10
Building the SPS2 Utility Library, libsps2util ... 11
Building and Running the Sample Applications .. 11

A Sample SPS2 Program.. 13
SPS2 Programmer’s Guide ... 15

Performing a DMA Transfer .. 15
Accessing the Emotion Engine Registers ... 16
Accessing the Graphics Synthesizer Registers .. 19
Accessing the Scratch Pad Memory ... 21
Accessing the Vector Unit Memories .. 22
Using SPS2 from Assembly Language... 23
Drawing a Triangle using libsps2dev & sps2UScreen .. 24
Accessing COP2 (VU0) & Macro Mode Instructions... 27
GSVNC Support .. 28

SPS2 Core Function Set Reference.. 29
sps2Init .. 30
sps2Release.. 32
sps2Allocate .. 33
sps2Free ... 35
sps2Remap ... 36
sps2GetPhysicalAddress .. 37
sps2FlushCache.. 38
sps2WaitForDMA .. 39
sps2SetOperationMode .. 40

SPS2 Extended Function Set Reference .. 41
_sps2Open .. 43
_sps2Close.. 44
_sps2MapEERegisters.. 45
_sps2MapGSRegisters ... 46
_sps2MapVUMemory.. 47
_sps2MapScratchPad ... 48
_sps2EnableCOP2Access .. 49
_sps2SetEIDIEnabled ... 50

SPS2 Utility Library, libsps2util.. 51

Copyright © 2002, 2003 Terratron Technologies Inc. 2

 SPS2 Version 0.4.0

Printf Functions ... 52
sps2UScreenInit .. 54
sps2UScreenShutdown... 56
sps2UScreenSwap.. 57
sps2UScreenClear .. 58
sps2UScreenGetFirstFreeGSPage... 59
sps2UScreenGetZPtr .. 60
sps2UScreenGetDrawBuff1 .. 61
sps2UScreenGetDrawBuff2 .. 62
sps2UScreenGetDrawBuffCurrent .. 63
sps2UScreenGetWidth.. 64
sps2UScreenGetHeight... 65
sps2UScreenGetZDepth ... 66
sps2UScreenGetVideoMode... 67
sps2UScreenGetPixelFormat.. 68
sps2UScreenSetVNCUpdateRate .. 69
sps2UScreenDisableVNC ... 70
sps2UPrintf.. 71
sps2UPrintfRender .. 72
sps2UPrintfSetWindow ... 73
sps2UPrintfSetPos .. 74
sps2UPrintfGetPos.. 75
sps2UPrintfSetZ .. 76
sps2UPrintfGetZ.. 77
sps2UPrintfFontHeight .. 78
sps2UPrintfStringWidth ... 79

Index .. 80

Copyright © 2002, 2003 Terratron Technologies Inc. 3

Introduction

SPS2 combines a library of inline functions with a Linux kernel module to facilitate the
development of high-performance applications on PlayStation 2 systems running Linux (for
PlayStation 2). The goal of SPS2 is to reduce the difference between developing within the Linux
environment and directly to the PlayStation 2 while allowing the developer to leverage the Linux
services and tools. A future version of SPS2 will allow developers to compile applications to run
either directly within the Runtime Environment or within the Linux environment with no
modifications to the source code.

SPS2 enables high-performance applications by allowing applications full access to the

PlayStation 2 DMA controller. It enables developers to allocate non-swappable memory
segments, allows the developers to obtain the physical addresses of the memory segments, and
enables access to the DMA controller registers in order to configure and initiate the DMA
transfers. In addition, SPS2 gives developers access to all of the memory-mapped Emotion
Engine and Graphics Synthesizer registers as well as the Vector Unit memories and the Scratch
Pad memory. Finally, SPS2 enables developers to access memory allocated through SPS2 in
both a cached and uncached manner.

Current Linux (for PlayStation 2) development utilities are either too restrictive; requiring

that the kernel be modified and recompiled so that a predefined portion of memory be
permanently put aside for use in DMA transfer, or don’t provide satisfactory performance; by
requiring the use of system calls to change register values or to initiate DMA transfers that could
perform a number of memory allocations and data shuffles before invoking the transfer. SPS2
seeks to address both of these issues by allowing programmers to allocate DMA friendly memory
during runtime and access the appropriate registers directly.

However, SPS2 is not without its faults. First, by exposing the DMA controller to non-

privileged users, improper use of SPS can compromise the stability and security of a system.
Whereas future versions of SPS2 will provide some tools to minimize the likelihood of crashing
the system during debugging, allowing users full access to the DMA controller will remain a
security concern; this is, unfortunately, a price that must be paid in favor of performance. Users
are cautioned not to allow access to their PlayStation 2 to people they do not trust. Another
problem specific to SPS2 is that whereas large amounts of memory can be allocated, SPS2
cannot guarantee that the entire memory region is physically consecutive. SPS2 can only
guarantee that individual pages – that is, 4096 bytes chunks – are physically consecutive. This
problem can be easily worked around by creating a reference DMA chain for data that extends
beyond 4096 bytes, pointing to the sequence of 4096 byte chunks of the data.

SPS2 delivers on its promise of providing high performance for Linux-based PlayStation

2 applications. For example, one of the provided sample applications, vspeed, is capable of
generating 560,000 textured, shaded polygons per frame, yielding about 34.2 million vertices per
second.

For the remainder of this document, Linux (for PlayStation 2) and PlayStation 2 will be

referred to as PS2 Linux and PS2, respectively.

Copyright © 2002 Terratron Technologies Inc. 4

 SPS2 Version 0.4.0

License Agreement

SPS2 IS DISTRIBUTED "AS IS". NO WARRANTY OF ANY KIND IS EXPRESSED OR
IMPLIED. YOU USE AT YOUR OWN RISK. TERRATRON TECHNOLOGIES INC. WILL NOT
BE LIABLE FOR DATA LOSS, DAMAGES, LOSS OF PROFITS, OR ANY OTHER KIND OF
LOSS WHILE USING OR MISUSING THIS SOFTWARE OR ANY DERIVATIVE WORKS
THEREOF.

In terms of your right to distribute applications that use the SPS2 libraries or kernel module, you
may:

1. Include the library files (sps2*.h) with your application in source or binary form, provided
that you do not modify them

2. Include any or all of the sample and framework code, modified or unmodified, in source
or binary form with your application

You may not:

1. Distribute a modified version of the library (sps2*.h) files, either with your application or
separately.

2. Distribute a source or binary version of the SPS2 kernel module, whether modified or
unmodified

3. Distribute any derivative work of the SPS2 kernel module

This license is not intended to be overly restrictive; rather, it is designed to ensure
maximum compatibility across different kernel versions and across different SPS2 versions. If
you would like to suggest any changes to the module or the libraries, please contact the authors
who will, at their sole discretion, choose to incorporate the changes in future releases.

Most importantly, this license is designed for the benefit of the community at large; it

discourages multiple “SPS2-like” modules from being released, causing severe fragmentation in
the Linux (for PlayStation2) community while giving developers motivation for getting their
updates included in the official SPS2 distribution.

“Linux” is a trademark or registered trademark of Linus Torvalds
PlayStation is a registered trademark of Sony Computer Entertainment Inc.
Terratron is a registered trademark of Terratron Technologies Inc.

Copyright © 2002, 2003 Terratron Technologies Inc. 5

 SPS2 Version 0.4.0

Acknowledgements

 This package would have never been completed had it not been for the support and
encouragement of two brilliant people, Lionel Lemarié and Morten Mikkelsen (aka Hikey and
Sparky). Hikey and Sparky patiently answered many of my (often stupid) questions and provided
a lot of input into what functionality this library should provide. They also put together the sample
applications that are provided in this package and tested the software for both stability and
functionality.

 Not only have I gained a lot of knowledge about the workings of the PS2 from Hikey and
Sparky, but also, and more importantly, I have gained two good friends.

Steven Osman

Copyright © 2002, 2003 Terratron Technologies Inc. 6

 SPS2 Version 0.4.0

History of Changes
Version 0.2.0
First public release.

Version 0.2.0a
• No new kernel module – the kernel module is still at 0.2.0.
• Some minor additions and corrections to the sps2 headers as well as a little bit of

restructuring. These changes include adding structures for some of the PS2 tags (e.g.
DMA tag & GIF tag). Refer to the headers for more details

• Updated the samples directory and added the tshower sample. In addition, the
readme.txt in the samples directory file has been expanded.

• Introduced the SPS2 Utility Library, libsps2util. This library contains a simple set of
screen handling routines as well as non-inline version of the sps2 functions for those
wanting to link to sps2 functions from other programming languages (e.g. assembly
language

Version 0.3.0
• Synchronized with kernel module 0.3.0
• Added _sps2EnableCOP2Access to enable COP2 and Macro Mode instructions.
• Added _sps2UNIEnableCOP2Access to sps2util
• Split sps2UScreenSwap() to sps2UScreenSwap and sps2UScreenClear. This will

require you to change your code!
• Updated screen.cpp to use sps2UScreenClear
• Update tutorial code to use sps2UScreenClear
• Fixed a small bug in sps2UScreenSwap, thanks to Kazan

Version 0.3.0a
• Added structures for most of the GIF/GS registers
• Moved a number of structures to sps2regstructs.h
• Added text for the first two tutorials. Many thanks to Henry Fortuna for contributing these

texts.
• Fixed a bug in the first tutorial, thanks to those who reported it.
• Fixed a bug in sps2vumemory.h, specifically VU0_MEM was wrong.
• Made geommath a stand-alone library and updated the samples to work with it.

Version 0.4.0
• Added printf functionality into libsps2util
• Added GSVNC support and enabled it by default for libsps2util apps
• Added support for UCAB -- uncached accelerated memory. Basically this is accessed

through SPS2_MAP_UCAB when issuing a map or remap command
• Added the ability to switch a process’s operation mode to supervisor mode or back to

user mode. This allows using the performance counters to time only the supervisor mode
process isolating the counters to an individual process (the only one in supervisor mode).

• Added the ability to enabled the EI & DI instructions to temporarily suspend interrupts.

Copyright © 2002, 2003 Terratron Technologies Inc. 7

 SPS2 Version 0.4.0

Programming with SPS2

 SPS2 is a kernel module which is accessed through a special device file, typically
/dev/sps2. SPS2 provides two API’s: the first, a set of ioctl() commands; and the second, a
number of inline functions. Use of the ioctl commands is heavily discouraged simply because
the inline functions are more convenient and safer to use. In terms of performance, the inline
functions provide only minimal error checking before invoking the ioctl commands, so they do
not impact performance noticeably. Another reason that use of the ioctl commands is
discouraged is that future versions of SPS2 may no longer support that function set. For
example, if a version of SPS2 were developed that allowed applications to run directly within the
Runtime Environment without the Linux kernel loaded, there might be no support for invoking file
operations such as ioctl().

This library of inline functions is further divided into two groups. The first group provides
a full set of functionality with a good set of defaults. Most developers should use this set of
functions. All functions in this group begin with the letters sps2. The second set of functions
provides a slightly more granular level of control at the cost of a few minor inconveniences to the
developer. These functions, which have names beginning with _sps2, will be of interest to
developers of middleware and other libraries that leverage off of SPS2. These two sets of
functions will be referred to as the SPS2 Core Function Set and the SPS2 Extended Function
Set, respectively, and the ioctl commands will be referred to as the SPS2 ioctl Command Set.

 Version 0.2.0a of SPS2 introduces a new library called the SPS2 Utility Library, or
libsps2util. This library currently serves two major functions. First, it defines non-inline
equivalents of all the functions in the SPS2 Core Function Set and the SPS2 Extended Function
Set. These sets of functions, prefixed with sps2UNI and _sps2UNI respectively, can be used to
leverage SPS2 functionality from any programming language that is capable of linking to libraries
that use the C calling convention. In addition, the SPS2 Utility Library adds functions that enable
a programmer to easily enable a graphics mode in the GS, and switch between double buffers.
This functionality, which is robust enough to be used by all of the samples provided with SPS2
allows developers to quickly set up the screen and focus more on developing their application
than initializing the system.

 Developers should be forewarned: SPS2 enables the developer to do much more than
Linux would ordinarily allow. This includes crashing the system. Developers are encouraged to
take a number of precautions to minimize data corruption and loss:

• Back up all files regularly
• Carefully read through code that builds DMA commands before executing it
• Sync the file system before executing an untested application (use man sync for more

information)
• If possible, mount some or all of the file system as read-only before executing an

untested application (use man mount)

Whereas syncing the file system will greatly reduce the chance of data corruption should the
PS2 crash, mounting partitions as read-only (in addition to the sync) will greatly reduce the boot
time of Linux by not requiring a file system check (fsck) of the read-only partitions. Future
versions of SPS2 will include tools to help predict the likelihood of a DMA transfer causing the
PS2 to crash, allowing the developer to circumvent the transfer. Ideas for additional debugging
tools are welcomed and encouraged.

Copyright © 2002, 2003 Terratron Technologies Inc. 8

 SPS2 Version 0.4.0

SPS2 Files and Directories

 Included in the SPS2 archive are a number of files and directories. The following table
outlines the roles that these items play:

Name Type Role
sps2interface.h File Declares the SPS2 ioctl Command Set and the format of

their parameters and return values
sps2lib.h File Defines the SPS2 Core Function Set and the SPS2

Extended Function Set functions. All functions are inline;
there is no linking required.

sps2registers.h File Defines macros for the Emotion Engine registers and the
Graphics Synthesizer registers.

sps2regstructs.h File Includes structures for some of the Emotion Engine and GS
registers.

sps2scratchpad.h File Defines macros to access the scratch pad memory
sps2tags.h File A header file that defines the structure of various PS2 tags
sps2types.h File A header file the defines the data types used by SPS2
sps2util.h File The header file that defines the functions in the SPS2 Utility

Library, libsps2util
sps2util.c File The source code the the SPS2 Utility Library, libsps2util
sps2vumemory.h File Defines macros to access the vector unit memories
Makefile File The makefile used to build the SPS2 Utility Library,

libsps2util
Tests Directory Contains a small set of test applications. These are more

useful for developing the kernel module than as sample
applications.

Samples Directory Contains a number of sample applications that use SPS2.
Also provide a framework by which other applications can be
developed

The following table describes the directories within the samples directory:

Name Type Role
readme.txt File A description of the samples with comments about the

techniques they illustrate
Makefile File This Makefile builds all of the samples
bumpmap Directory This sample uses the GS blendmodes to perform per-pixel

bumpmapping
common Directory Contains a number of common files used by most of the

samples, including the framework
dyntexs Directory Illustrates how to synchronize the texture upload with the

geometry upload. Most closely approximates a “real” PS2
application

geommath Directory Contains a small library for geometry related math (vectors,
matrices, quaternions) which is used by these samples.

int_lock Directory Creates an interlock loop to perform a number of operations
in parallel

ps2lframework Directory Defines a framework by which other applications can be
developed

tshower Directory Shows a high performance particle system that takes
advantage of loop unrolling for maximum efficiency.

vspeed Directory Illustrates the speed capabilities of the PS2, even within the
Linux kernel by rendering 560,000 transformed, textured and
shaded polygons per frame

Copyright © 2002, 2003 Terratron Technologies Inc. 9

 SPS2 Version 0.4.0

Installing and Loading SPS2
 The SPS2 Kernel Module is shipped separately. Programmers should download and
install the kernel module before using this library.

Before You Build the Kernel Module
The build process assumes that the kernel source code is available in /usr/src/linux. For

those of you who have installed a new kernel (for example, the xRhino kernel), chances are that
your /usr/src/linux will still point to the original Linux (for PlayStation2) kernel. You'll need to
install the xRhino kernel source in /usr/src and create a symbolic link to /usr/src/linux.

Building the Kernel Module
 In order for applications that use SPS2 to work, the sps2_mod kernel module must be
built and loaded. To achieve this, starting from the root directory of the SPS2 kernel module
distribution perform the following steps:

make depend
make

If you’re not running as root at this point:

su

and finally:

make install

This will build the kernel module for the current kernel version loaded, and install it in
/lib/modules/<version>/misc. It also installs two scripts, sps2_load and sps2_unload
in /usr/sbin. Finally, it configures the module to load automatically when the system is booted
up in runlevels 2, 3, 4, or 5, and unload when the system is switched to runlevels 0, 1 and 6.

Loading the Kernel Module
 To load the SPS2 kernel module, as root, invoke:

/usr/sbin/sps2_load

Unloading the Kernel Module
 To unload the SPS2 kernel module, as root, invoke:

/usr/sbin/sps2_unload

Removing SPS2 From Your System
 SPS2 can be permanently removed from your system by changing to the root directory of
the SPS2 kernel module distribution and, as root, performing the following step:

make uninstall

Copyright © 2002, 2003 Terratron Technologies Inc. 10

 SPS2 Version 0.4.0

Building the SPS2 Utility Library, libsps2util
 The SPS2 Utility Library, libsps2util, is built simply by running make from within the top-
level SPS2 development directory, like so:

make

In order to link to the library, you must use the –L directive to specify where libsps2util.a resides,
and then the –lsps2util directive to include the library. For example, to compile a source file
called hello.c into a program called hello, and assuming that you have extracted the SPS2
development files in ~/sps2dev-0.4.0, issue:

gcc –c –o hello.o hello.c
gcc –o hello –lsps2util –L~/sps2dev-0.4.0

Building and Running the Sample Applications
 In order to build and run the samples, first follow the instructions in the section Building
and Loading the Kernel Module. Then, starting from the root directory of the SPS2 distribution:

cd samples
make depend
make

 To run the bumpmap sample, starting from the samples directory:

cd bumpmap
./spky_bumpmap

 You can use Control+C to exit the application.

 To run the dyntexs sample, starting from the samples directory:

cd dyntexs
./mskpath3app

 You can use Control+C to exit the application.

 To run the int_lock sample, starting from the samples directory:

cd int_lock
./intapp

 To run the ps2lframework sample, starting from the samples directory:

cd ps2lframework
./defapp

 You can use Control+C to exit the application.

 To run the vspeed sample, starting from the samples directory:

cd vspeed
./vspeed

Copyright © 2002, 2003 Terratron Technologies Inc. 11

 SPS2 Version 0.4.0

 You can use Control+C to exit the application.

 To run the tshower sample, starting from the samples directory:

cd tshower
./tshower

 You can use Control+C to exit the application.

Copyright © 2002, 2003 Terratron Technologies Inc. 12

 SPS2 Version 0.4.0

A Sample SPS2 Program

This file can be found as tests/hello.c. It illustrates many of the key concepts in the SPS2
library. The following code shows how to:

• Initialize the SPS2 library
• Allocate memory using the SPS2 library
• Execute a simple, normal-mode DMA transfer to the scratch pad memory
• Flush the cache to ensure that all data to be transferred is written to memory
• Access the DMA controller registers directly to initiate a DMA transfer
• Access the scratch pad memory directly to display some data that was just transferred
• Access the Graphics Synthesizer registers directly to change the background color
• Shut down the SPS2 library

#include <stdio.h>
#include <sps2lib.h>

// This is the string we will be outputting
#define OUTPUT_STRING "Hello SPS2 world!\n"

// This is the number of Q-Words (i.e. 16 byte increments) to copy
// We want to round up to the next Q-Word
#define OUTPUT_STRING_QWC ((strlen(OUTPUT_STRING)+15) >> 4)

int main(int iArgC, const char **ppcArgV) {
 int iSPS2Device; // Handle to the SPS2 device
 char *pcMemory; // DMA memory for transfer
 sps2Memory_t *pSPS2Memory; // DMA memory descriptor
 Dn_CHCR_t chcrValue; // Value sent to DMA controller to
 // initiate transfer
 Dn_SADR_t sadrValue; // Destination scratch pad address
 Dn_MADR_t madrValue; // Source memory address

 iSPS2Device=sps2Init(); // Initialize the SPS2 device

 if (iSPS2Device<0) {
 fprintf(stderr,"Error initializing SPS2 library\n");
 exit(-1);
 }

 // Allocate 4K of memory. We're allocating in 4K chunks, we want this
 // memory to be cached this could improve performance if we did a lot
 // of work on this memory before transferring. We have to remember to
 // flush the cache before the transfer
 pSPS2Memory=sps2Allocate(4096, SPS2_MAP_BLOCK_4K | SPS2_MAP_CACHED,
 iSPS2Device);

 if (!pSPS2Memory) {
 fprintf(stderr, "Error allocating memory\n");
 exit(-2);
 }

 // Get the actual pointer to the memory
 pcMemory=(char *) pSPS2Memory->pvStart;

 // Copy our string to the memory
 strcpy(pcMemory, OUTPUT_STRING);

 // Flush the cache

Copyright © 2002, 2003 Terratron Technologies Inc. 13

 SPS2 Version 0.4.0

 sps2FlushCache(iSPS2Device);

 // Set the memory address of the DMA transfer. We're using channel
 // 9, which is a transfer to the scratch pad memory

 madrValue.i32=0; // Make sure all bits are zero
 // We're not copying from the scratch pad
 madrValue.s.SPR=0;
 // Get the physical address for the memory we allocated
 madrValue.s.ADDR=sps2GetPhysicalAddress(pcMemory, pSPS2Memory);
 // Set the memory address register in the DMA controller
 *EE_D9_MADR=madrValue.i32;

 sadrValue.i32=0; // Make sure all bits are zero
 // We're copying to the beginning of the scratch pad
 sadrValue.s.ADDR=0;
 // Set the scratch pad memory address in the DMA controller
 *EE_D9_SADR=sadrValue.i32;

 // Set the number of q-words to transfer.
 *EE_D9_QWC=OUTPUT_STRING_QWC;

 chcrValue.i32=0; // Set all CHCR bits to zero
 chcrValue.s.MOD=CHCR_MOD_NORMAL; // Normal DMA transfer
 chcrValue.s.STR=1; // Start DMA transfer

 // Set the Dn_CHCR register. This starts the DMA transfer since we set STR=1
 *EE_D9_CHCR=chcrValue.i32;

 sps2WaitForDMA(9, iSPS2Device); // Wait for DMA transfer to finish

 // Display the string now stored in the scratch pad
 printf((char *) SCRATCH_PAD);

 DPUT_GS_BGCOLOR(0xff0000); // BG color is BBGGRR, set it to all blue

 sps2Release(iSPS2Device); // Close the SPS2 library

 return 0;
}

Copyright © 2002, 2003 Terratron Technologies Inc. 14

 SPS2 Version 0.4.0

SPS2 Programmer’s Guide

 The following sections outline the basic steps needed to perform common tasks with the
SPS2 library.

Performing a DMA Transfer
 One of the most important reasons to use SPS2 is because it grants you complete
access to the DMA controller. In order to perform a DMA transfer, a developer needs to perform
several steps:

1. Include sps2lib.h
2. Initialize the SPS2 device with sps2Init or _sps2Open
3. Allocate unswappable memory with sps2Allocate
4. Load data to be transferred into the memory
5. (optional) build DMA chains also within the unswappable memory
6. (optional) if using cacheable memory, flush the cache with sps2FlushCache
7. Setup the DMA controller registers (see Accessing the Emotion Engine Registers below)
8. Start the transfer by setting the STR bit on the Dn_CHCR register to 1 (see Accessing the

Emotion Engine Registers below)
9. (optional) wait for the transfer to complete with sps2WaitForDMA
10. Free the memory with sps2Free
11. Shut down the SPS2 device with sps2Release or _sps2Close

The example above performs all of these steps except for #5 because it performs a normal mode
transfer.

Also, note that there are a number of unions defined for some of the registers is
sps2regstructs.h for your convenience. As an example, this is the union for the Dn_CHCR
registers.

typedef union Dn_CHCR {
 sps2uint32 i32;

 struct {
 unsigned int DIR : 1;
 unsigned int _PAD1 : 1;
 unsigned int MOD : 2;
 unsigned int ASP : 2;
 unsigned int TTE : 1;
 unsigned int TIE : 1;
 unsigned int STR : 1;
 unsigned int _PAD2 : 10;
 unsigned int TAG_PCE : 2;
 unsigned int TAG_ID : 3;
 unsigned int TAG_IRQ : 1;
 } s;
} Dn_CHCR_t;

Copyright © 2002, 2003 Terratron Technologies Inc. 15

 SPS2 Version 0.4.0

Accessing the Emotion Engine Registers

In order to access the Emotion Engine registers directly using SPS2, a developer may
use one of the two methods outlined below. Note that because the FIFO registers are 128 bits in
length and they must be read from/written to all at once, SPS2 provides access functions instead
of 128 bit pointers. This is similar to the 64 bit Graphics Synthesizer registers.
The Emotion Engine register macros are defined in the file sps2registers.h

Method 1 Using the SPS2 Core Function Set:

1. Include sps2lib.h
2. Initialize the SPS2 device with sps2Init.
3. Access the Emotion Engine registers by using the pointers listed below.
4. Release the SPS2 device with sps2Release (or just exit the application).

EE_VIF0_MASK DMAC Timer
EE_VIF0_CODE EE_T0_COUNT EE_D0_CHCR
EE_VIF0_ITOPS EE_T0_MODE EE_D0_MADR
EE_VIF0_ITOP EE_T0_COMP EE_D0_QWC
EE_VIF0_R0 EE_T0_HOLD EE_D0_TADR
EE_VIF0_R1 EE_D0_ASR0
EE_VIF0_R2 EE_T1_COUNT EE_D0_ASR1
EE_VIF0_R3 EE_T1_MODE
EE_VIF0_C0 EE_T1_COMP EE_D1_CHCR
EE_VIF0_C1 EE_T1_HOLD EE_D1_MADR
EE_VIF0_C2 EE_D1_QWC
EE_VIF0_C3 EE_T2_COUNT EE_D1_TADR
 EE_T2_MODE EE_D1_ASR0
VIF1 EE_T2_COMP EE_D1_ASR1

 EE_VIF1_STAT
EE_T3_COUNT EE_D2_CHCR EE_VIF1_FBRST
EE_T3_MODE EE_D2_MADR EE_VIF1_ERR
EE_T3_COMP EE_D2_QWC EE_VIF1_MARK

EE_D2_TADR EE_VIF1_CYCLE
EE_D2_ASR0 EE_VIF1_MODE IPU
EE_D2_ASR1 EE_VIF1_NUM EE_IPU_CMD
 EE_VIF1_MASK EE_IPU_CTRL
EE_D3_CHCR EE_VIF1_CODE EE_IPU_BP
EE_D3_MADR EE_VIF1_ITOPS EE_IPU_TOP
EE_D3_QWC EE_VIF1_BASE
 EE_VIF1_OFST GIF EE_D4_CHCR EE_VIF1_TOPS

EE_GIF_CTRL EE_D4_MADR EE_VIF1_ITOP
EE_GIF_MODE EE_D4_QWC EE_VIF1_TOP
EE_GIF_STAT EE_D4_TADR EE_VIF1_R0
EE_GIF_TAG0 EE_VIF1_R1
EE_GIF_TAG1 EE_D5_CHCR EE_VIF1_R2
EE_GIF_TAG2 EE_D5_MADR EE_VIF1_R3
EE_GIF_TAG3 EE_D5_QWC EE_VIF1_C0
EE_GIF_CNT EE_VIF1_C1
EE_GIF_P3CNT EE_D6_CHCR EE_VIF1_C2 EE_GIF_P3TAG EE_D6_MADR EE_VIF1_C3 EE_D6_QWC VIF0 EE_D6_TADR FIFO EE_VIF0_STAT DPUT_EE_VIF0_FIFO(val)
EE_VIF0_FBRST EE_D7_CHCR DPUT_EE_VIF1_FIFO(val)
EE_VIF0_ERR EE_D7_MADR DGET_EE_VIF1_FIFO(val) EE_VIF0_MARK EE_D7_QWC DPUT_EE_GIF_FIFO(val)
EE_VIF0_CYCLE DGET_EE_IPU_out_FIFO
EE_VIF0_MODE EE_D8_CHCR DPUT_EE_IPU_in_FIFO(val)
EE_VIF0_NUM EE_D8_MADR

Copyright © 2002, 2003 Terratron Technologies Inc. 16

 SPS2 Version 0.4.0

EE_D_CTRL EE_D8_QWC
EE_D_STAT EE_D8_SADR INTC
EE_D_PCR EE_I_STAT
EE_D_SQWC EE_D9_CHCR EE_I_MASK
EE_D_RBSR EE_D9_MADR
EE_D_RBOR EE_D9_QWC SIF
EE_D_STADR EE_D9_TADR EE_SB_SMFLG
EE_D_ENABLER EE_D9_SADR
EE_D_ENABLEW

Method 2 Using the SPS2 Extended Function Set:

1. Include sps2lib.h
2. Open the SPS2 device with _sps2Open
3. Obtain a base pointer to the Emotion Engine registers with _sps2MapEERegisters
4. Access the Emotion Engine registers by using the functions below with the base pointer:
5. Close the SPS2 device with _sps2Close (or just exit the application).

EE_VIF1_C1_OFF(base) EE_VIF0_FBRST_OFF(base) Timer
EE_VIF1_C2_OFF(base) EE_VIF0_ERR_OFF(base) EE_T0_COUNT_OFF(base)
EE_VIF1_C3_OFF(base) EE_VIF0_MARK_OFF(base) EE_T0_MODE_OFF(base)

EE_VIF0_CYCLE_OFF(base) EE_T0_COMP_OFF(base)
EE_VIF0_MODE_OFF(base) EE_T0_HOLD_OFF(base) FIFO
EE_VIF0_NUM_OFF(base) DPUT_EE_VIF0_FIFO_OFF(

base, val) EE_VIF0_MASK_OFF(base) EE_T1_COUNT_OFF(base)
EE_VIF0_CODE_OFF(base) EE_T1_MODE_OFF(base) DPUT_EE_VIF1_FIFO_OFF(

base, val) EE_VIF0_ITOPS_OFF(base) EE_T1_COMP_OFF(base)
EE_VIF0_ITOP_OFF(base) EE_T1_HOLD_OFF(base) DGET_EE_VIF1_FIFO_OFF(

base, val) EE_VIF0_R0_OFF(base)
EE_VIF0_R1_OFF(base) EE_T2_COUNT_OFF(base) DPUT_EE_GIF_FIFO_OFF(b

ase, val) EE_VIF0_R2_OFF(base) EE_T2_MODE_OFF(base)
EE_VIF0_R3_OFF(base) EE_T2_COMP_OFF(base) DGET_EE_IPU_out_FIFO_O

FF(base) EE_VIF0_C0_OFF(base)
EE_VIF0_C1_OFF(base) EE_T3_COUNT_OFF(base) DPUT_EE_IPU_in_FIFO_OF

F(base, val) EE_VIF0_C2_OFF(base) EE_T3_MODE_OFF(base)
EE_VIF0_C3_OFF(base) EE_T3_COMP_OFF(base)

 DMAC
VIF1 IPU EE_D0_CHCR_OFF(base)
EE_VIF1_STAT_OFF(base) EE_IPU_CMD_OFF(base) EE_D0_MADR_OFF(base)
EE_VIF1_FBRST_OFF(base) EE_IPU_CTRL_OFF(base) EE_D0_QWC_OFF(base)
EE_VIF1_ERR_OFF(base) EE_IPU_BP_OFF(base) EE_D0_TADR_OFF(base)
EE_VIF1_MARK_OFF(base) EE_IPU_TOP_OFF(base) EE_D0_ASR0_OFF(base)
EE_VIF1_CYCLE_OFF(base) EE_D0_ASR1_OFF(base)
EE_VIF1_MODE_OFF(base) GIF
EE_VIF1_NUM_OFF(base) EE_D1_CHCR_OFF(base) EE_GIF_CTRL_OFF(base)
EE_VIF1_MASK_OFF(base) EE_D1_MADR_OFF(base) EE_GIF_MODE_OFF(base)
EE_VIF1_CODE_OFF(base) EE_D1_QWC_OFF(base) EE_GIF_STAT_OFF(base)
EE_VIF1_ITOPS_OFF(base) EE_D1_TADR_OFF(base) EE_GIF_TAG0_OFF(base)
EE_VIF1_BASE_OFF(base) EE_D1_ASR0_OFF(base) EE_GIF_TAG1_OFF(base)
EE_VIF1_OFST_OFF(base) EE_D1_ASR1_OFF(base) EE_GIF_TAG2_OFF(base)
EE_VIF1_TOPS_OFF(base) EE_GIF_TAG3_OFF(base)
EE_VIF1_ITOP_OFF(base) EE_D2_CHCR_OFF(base) EE_GIF_CNT_OFF(base)
EE_VIF1_TOP_OFF(base) EE_D2_MADR_OFF(base) EE_GIF_P3CNT_OFF(base)
EE_VIF1_R0_OFF(base) EE_D2_QWC_OFF(base) EE_GIF_P3TAG_OFF(base)
EE_VIF1_R1_OFF(base) EE_D2_TADR_OFF(base) EE_VIF1_R2_OFF(base) EE_D2_ASR0_OFF(base) VIF0 EE_VIF1_R3_OFF(base) EE_D2_ASR1_OFF(base) EE_VIF0_STAT_OFF(base) EE_VIF1_C0_OFF(base)

Copyright © 2002, 2003 Terratron Technologies Inc. 17

 SPS2 Version 0.4.0

EE_D3_CHCR_OFF(base)
EE_D3_MADR_OFF(base)
EE_D3_QWC_OFF(base)

EE_D4_CHCR_OFF(base)
EE_D4_MADR_OFF(base)
EE_D4_QWC_OFF(base)
EE_D4_TADR_OFF(base)

EE_D5_CHCR_OFF(base)
EE_D5_MADR_OFF(base)
EE_D5_QWC_OFF(base)

EE_D6_CHCR_OFF(base)
EE_D6_MADR_OFF(base)
EE_D6_QWC_OFF(base)
EE_D6_TADR_OFF(base)

EE_D7_CHCR_OFF(base)
EE_D7_MADR_OFF(base)
EE_D7_QWC_OFF(base)

EE_D8_CHCR_OFF(base)
EE_D8_MADR_OFF(base)
EE_D8_QWC_OFF(base)
EE_D8_SADR_OFF(base)

EE_D9_CHCR_OFF(base)
EE_D9_MADR_OFF(base)
EE_D9_QWC_OFF(base)
EE_D9_TADR_OFF(base)
EE_D9_SADR_OFF(base)

EE_D_CTRL_OFF(base)

EE_D_STAT_OFF(base)
EE_D_PCR_OFF(base)
EE_D_SQWC_OFF(base)
EE_D_RBSR_OFF(base)
EE_D_RBOR_OFF(base)
EE_D_STADR_OFF(base)
EE_D_ENABLER_OFF(base)
EE_D_ENABLEW_OFF(base)

INTC
EE_I_STAT_OFF(base)
EE_I_MASK_OFF(base)

SIF
EE_SB_SMFLG_OFF(base)

Copyright © 2002, 2003 Terratron Technologies Inc. 18

 SPS2 Version 0.4.0

Accessing the Graphics Synthesizer Registers

In order to access the Graphics Synthesizer registers directly using SPS2, a developer may use
one of the two methods outlined below. Note that unlike the Emotion Engine registers and the
Scratch Pad and Vector Unit memories, the Graphics Synthesizer registers cannot be accessed
simply by assigning a value to the appropriate pointer.

For example, one would expect to set the background color in the following manner:

*GS_BGCOLOR=0xbbggrr;

but instead one must set the color in the following manner:

DPUT_GS_BGCOLOR(0xbbggrr);

The reason for this is that all Graphics Synthesizer registers are 64 bits in length. Unfortunately,
regardless of the pointer prototype, issuing a *GS_BGCOLOR results in two separate store
functions to store 32 bits at a time. This is a problem because with each store the Emotion
Engine will copy the value to the Graphics Synthesizer. This means that when the lower 32 bits
are stored they are sign extended to 64 bits and transferred regardless of the intended upper 32
bits. If the application is compiled to MIPS 3 standards so that the store produced is a single 64
bit store, the code ends up being incompatible with the other libraries on the PS2 Linux system.
The DPUT macros use some inline assembly to ensure that all 64 bits are store correctly in one
write.

The DPUT macros for the Graphics Synthesizer registers are all defined in sps2registers.h.

Method 1 Using the SPS2 Core Function Set:

1. Include sps2lib.h
2. Initialize the SPS2 device with sps2Init.
3. Set the Graphics Synthesizer registers with the following macros:

DPUT_GS_PMODE(value)
DPUT_GS_SMODE1(value)
DPUT_GS_SMODE2(value)
DPUT_GS_SRFSH(value)
DPUT_GS_SYNCH1(value)
DPUT_GS_SYNCH2(value)
DPUT_GS_SYNCV(value)
DPUT_GS_DISPFB1(value)
DPUT_GS_DISPLAY1(value)
DPUT_GS_DISPFB2(value)
DPUT_GS_DISPLAY2(value)
DPUT_GS_EXTBUF(value)
DPUT_GS_EXTDATA(value)
DPUT_GS_EXTWRITE(value)
DPUT_GS_BGCOLOR(value)
DPUT_GS_CSR(value)
DPUT_GS_IMR(value)
DPUT_GS_BUSDIR(value)
DPUT_GS_SIGBLID(value)

4. Release the SPS2 device with sps2Release (or just exit the application).

Copyright © 2002, 2003 Terratron Technologies Inc. 19

 SPS2 Version 0.4.0

Method 2 Using the SPS2 Extended Function Set:
1. Include sps2lib.h
2. Open the SPS2 device with _sps2Open
3. Obtain a base pointer to the Graphics Synthesizer registers with _sps2MapGSRegisters
4. Set the Graphics Synthesizer registers by using the following macros with the base

pointer:
DPUT_GS_PMODE_OFF(base pointer, value)
DPUT_GS_SMODE1_OFF(base pointer, value)
DPUT_GS_SMODE2_OFF(base pointer, value)
DPUT_GS_SRFSH_OFF(base pointer, value)
DPUT_GS_SYNCH1_OFF(base pointer, value)
DPUT_GS_SYNCH2_OFF(base pointer, value)
DPUT_GS_SYNCV_OFF(base pointer, value)
DPUT_GS_DISPFB1_OFF(base pointer, value)
DPUT_GS_DISPLAY1_OFF(base pointer, value)
DPUT_GS_DISPFB2_OFF(base pointer, value)
DPUT_GS_DISPLAY2_OFF(base pointer, value)
DPUT_GS_EXTBUF_OFF(base pointer, value)
DPUT_GS_EXTDATA_OFF(base pointer, value)
DPUT_GS_EXTWRITE_OFF(base pointer, value)
DPUT_GS_BGCOLOR_OFF(base pointer, value)
DPUT_GS_CSR_OFF(base pointer, value)
DPUT_GS_IMR_OFF(base pointer, value)
DPUT_GS_BUSDIR_OFF(base pointer, value)
DPUT_GS_SIGBLID_OFF(base pointer, value)

5. Close the SPS2 device with _sps2Close (or just exit the application).

Copyright © 2002, 2003 Terratron Technologies Inc. 20

 SPS2 Version 0.4.0

Accessing the Scratch Pad Memory

In order to access the Scratch Pad memory directly using SPS2, a developer may use one of the
two methods outlined below.

SCRATCH_PAD and SCRATCH_PAD_OFF are defined in sps2scratchpad.h.

Method 1 Using the SPS2 Core Function Set:

1. Include sps2lib.h
2. Initialize the SPS2 device with sps2Init.
3. Access the Scratch Pad memory by using the SCRATCH_PAD pointer.
4. Release the SPS2 device with sps2Release (or just exit the application).

Method 2 Using the SPS2 Extended Function Set:

1. Include sps2lib.h
2. Open the SPS2 device with _sps2Open
3. Obtain a base pointer to the Scratch Pad memory with _sps2MapScratchPad
4. Access the Scratch Pad memory by using the SCRATCH_PAD_OFF(base pointer)

function with the base pointer
5. Close the SPS2 device with _sps2Close (or just exit the application).

Copyright © 2002, 2003 Terratron Technologies Inc. 21

 SPS2 Version 0.4.0

Accessing the Vector Unit Memories

In order to access the Vector Unit memories directly using SPS2, a developer may use one of the
two methods outlined below.

The Vector Unit functions and pointers are defined in sps2vumemory.h.

Method 1 Using the SPS2 Core Function Set:

1. Include sps2lib.h
2. Initialize the SPS2 device with sps2Init.
3. Access the Vector Unit memories by using the following pointers:

VU0_MEM
VU0_MICRO_MEM
VU1_MEM
VU1_MICRO_MEM

4. Release the SPS2 device with sps2Release (or just exit the application).

Method 2 Using the SPS2 Extended Function Set:

1. Include sps2lib.h
2. Open the SPS2 device with _sps2Open
3. Obtain a base pointer to the Vector Unit memories with _sps2MapVUMemory
4. Access the Vector Unit memories by using the following functions with the base pointer:

VU0_MEM_OFF(base pointer)
VU0_MICRO_MEM_OFF(base pointer)
VU1_MEM_OFF(base pointer)
VU1_MICRO_MEM_OFF(base pointer)

5. Close the SPS2 device with _sps2Close (or just exit the application).

Copyright © 2002, 2003 Terratron Technologies Inc. 22

 SPS2 Version 0.4.0

Using SPS2 from Assembly Language
Version 0.2.0a of SPS2 introduces the SPS2 Utility Library, libsps2util which is a library

that contains non-inline equivalents of all the sps2 core and extended functions documented in
this manual. These have prefixes of sps2UNI and _sps2UNI (for core and extended functions,
respectively), with the U signifying the SPS2 (U)tility library, libsps2util, and the NI standing for
non inline function.

These functions can be linked to using standard C calling conventions from other

programming languages, allowing any programming language that can utilize C libraries to take
advantage of the functionality offered by SPS2.

Copyright © 2002, 2003 Terratron Technologies Inc. 23

 SPS2 Version 0.4.0

Drawing a Triangle using libsps2dev & sps2UScreen

The following is a small program that uses the SPS2 Core Function Set and libsps2dev to draw a
multi-colored triangle on the screen. Note that it does so by directly poking values into the GIF
FIFO, which is probably the slowest way in which a triangle can be drawn. On the other hand, it
shows how the sps2UScreen screen handling routine functions can be used to create a graphical
application with double buffering.

This code performs simple initialization by calling

• sps2Init()
• sps2UScreenInit(0)

For every frame, it clears the drawing area using sps2UScreenClear, and then calls a function
called drawTriangle() which:

• Creates a GIF tag (see sps2tags.h for details)
• Sends it to the GIF through the GIF FIFO
• Then sends three color and x,y,z coordinate pairs to draw the triangle.

Once the triangle has been drawn, it uses sps2UScreenSwap() to wait for VSync and to swap
buffers. Finally, had there been code to break out of the loop, this code would have shut
everything down by calling:

• sps2UScreenShutdown()
• sps2Release().

#include <stdio.h>

#include <sps2lib.h>
#include <sps2tags.h>
#include <sps2util.h>

void drawTriangle();

// Define the coordinates of our triangle
typedef int vertex_t[2];
vertex_t aVertices[]={
 {-150, -150}, // Up from the center, to the left
 { 150, -150}, // Up from the center, to the right
 { 0, 150} // Down from the center, in the middle
}; // triangle coordinates

// Define the colors of the points
// Make sure there's one of these for each coordinate!
typedef int color_t[3];
color_t aColors[]={
 {255, 0, 0}, // All red
 { 0,255, 0}, // All green
 { 0, 0,255} // All blue
}; // triangle colors

/**
 * This is the main function of our tutorial. It will perform some simple
 * initialization and then set up a small loop to repeatedly draw our
 * triangle.
 */

Copyright © 2002, 2003 Terratron Technologies Inc. 24

 SPS2 Version 0.4.0

int main() {
 int iSPS2Descriptor; // The handle we use for sps2

 iSPS2Descriptor=sps2Init(); // Initialize sps2

 // Initialize the screen. Zero tells sps2UScreenInit to exit gracefully
 // when it receives a signal.
 sps2UScreenInit(0);

 while (1) {
 // Clear the draw area. The three zeros mean we want to clear it to a
 // color that has zero red, zero green, and zero blue respectively.
 // In simpler terms, we're clearing the screen to black.
 sps2UScreenClear(0,0,0);

 // Draw the triangle
 drawTriangle();

 // Swap displays now that we're done
 sps2UScreenSwap();
 }

 // Shut down the screen
 sps2UScreenShutdown();

 // and close sps2
 sps2Release(iSPS2Descriptor);
 return 0;
}

/**
 * This function will draw our triangle. It's a little bit inefficient because
 * it builds the whole GIF tag every frame (the GIF tag could have been
 * prepared earlier, for instance). On the other hand, since we're only
 * drawing one triangle on the screen, this is of very little concern.
 */
void drawTriangle() {
 sps2GIFTag_t gifTag;
 sps2GIFPackedRegister_t gifRegister;
 int iPointLooper;

 // Prepare the GIF tag
 gifTag.i128=0; // Blank it out
 gifTag.s.NLOOP=3; // 3 entries. One entry for each of the points.
 gifTag.s.PRE=1; // We are providing a valid PRIM value
 gifTag.s.EOP=1; // End of packet -- draw me please!
 gifTag.s.PRIM=11; // 3 = triangle | 8 = gourard shading
 gifTag.s.FLG=GIF_FLG_PACKED; // We're using the packed format for data
 gifTag.s.NREG=0; // Start off with zero registers, increment as we
 // populate the descriptions

 // Add a register. It will be an RGBAQ register
 SPS2_SET_GIF_REG(gifTag, gifTag.s.NREG++, GIF_REG_RGBAQ);
 // Add another register. It will by an XYZ2 register
 SPS2_SET_GIF_REG(gifTag, gifTag.s.NREG++, GIF_REG_XYZ2);

 // Send the GIF tag
 DPUT_EE_GIF_FIFO(gifTag.i128);

 // Now that we promised three sets of RGBAQ and XYZ2 registers, we should
 // deliver them.
 for (iPointLooper=0; iPointLooper<3;iPointLooper++) {
 // First, prepare and sent the RGBAQ register

Copyright © 2002, 2003 Terratron Technologies Inc. 25

 SPS2 Version 0.4.0

 gifRegister.i128=0;
 gifRegister.RGBAQ.s.R=aColors[iPointLooper][0];
 gifRegister.RGBAQ.s.G=aColors[iPointLooper][1];
 gifRegister.RGBAQ.s.B=aColors[iPointLooper][2];
 DPUT_EE_GIF_FIFO(gifRegister.i128);

 // Next, prepare and send the XYZ2 register
 gifRegister.i128=0;
 gifRegister.XYZ2.s.X=(aVertices[iPointLooper][0]+2048) << 4;
 gifRegister.XYZ2.s.Y=(aVertices[iPointLooper][1]+2048) << 4;
 gifRegister.XYZ2.s.Z=(aVertices[iPointLooper][2]) << 4;
 DPUT_EE_GIF_FIFO(gifRegister.i128);
 }
}

Copyright © 2002, 2003 Terratron Technologies Inc. 26

 SPS2 Version 0.4.0

Accessing COP2 (VU0) & Macro Mode Instructions

Starting with version 0.3.0, SPS2 allows access to COP2 by default when using the

SPS2 Core Function Set or with the _sps2EnableCOP2Access function in the SPS2 Extended
Function Set

The following small application illustrates how to use this functionality to read the value of

the VI01 integer register from VU0.

#include <sps2lib.h>

int main() {
 int iSPS2Device;
 unsigned int vi01;

 iSPS2Device=sps2Init();
 printf("Device=%i\n", iSPS2Device);
 __asm__("cfc2 %0, $vi1" : "=r" (vi01));
 printf("And vi01 is %i\n", vi01);
 return 0;
}

Copyright © 2002, 2003 Terratron Technologies Inc. 27

 SPS2 Version 0.4.0

GSVNC Support
Starting with version 0.4.0, SPS2 has built in support for GSVNC. When used in conjunction with
GSVNC which may be downloaded from http://window.terratron.com/~sosman/ps2linux/ (version
0.1.3 at least will be needed), SPS2 applications can be viewed remotely on PC’s and a certain
amount of control can be exercised on the PC.

First, screenshots can be more easily taken from the PC (press Alt+PrintScreen on Windows or
use xwd in linux).

Second, GSVNC can be used to pause your application by pressing control+p. This is useful
when wanting to view several of the buffers for the exact same frame.

Third, the following keys can be used from a VNC viewer to control the output:

1 – Displays the first of the two buffers
2 – Displays the second of the two buffers
r – Displays the buffer being rendered (which will be either 1 or 2)
d – Displays the buffer being displayed on screen (which not be the buffer displayed by r)
a – Allows you to view all areas of the GS memory. When viewing with this option use
up/down/page up/page down/control+page up/control+page down to set the starting address of
the screen dump.
z – Allows you to view the Z-buffer. When viewing the Z buffer, 24 bit Z values are directly
mapped to R/G/B pixels on the VNC screen unless you switch to clamp mode which clamps the
display to 8 out of the 24 bits. To enter clamp mode, press c while viewing the Z buffer and use
the left and right arrows to adjust the 8-bit range being clamped.

control+p pauses/resumes the application.
space pauses/resumes VNC screen updates.

Aside from reserving some memory, the VNC support in SPS2 imposes no overhead so long as
there is no VNC server running or there are no clients connected. The libsps2util functions
sps2UScreenDisableVNC and sps2UScreenSetVNCUpdateRate can be disable this
support or to change the rate at which screen shots are grabbed when a client is connected.

Note however that if memory is your concern, GSVNC’s memory is shared across _all_ GSVNC
supported applications instead of being allocated separately for each process.

Copyright © 2002, 2003 Terratron Technologies Inc. 28

 SPS2 Version 0.4.0

SPS2 Core Function Set Reference

 In the next pages, the instructions that constitute the SPS2 Core Function Set will be
outlined. Developers are encouraged to use only the functions in the core function set as much
as possible. They provide a good set of default actions for extreme convenience and ease of
development while minimizing the amount of overhead they introduce to an application.

Copyright © 2002, 2003 Terratron Technologies Inc. 29

 SPS2 Version 0.4.0

sps2Init

Prototype:
 static inline int sps2Init();

Non-inline version in libsps2util:
 int sps2UNIInit();

Parameters:
 None

Return Value:

• If successful, a descriptor to the SPS2 device (>=0)
• If unsuccessful, an error number <0

See Also:
 _sps2Open, sps2Release

Comments:
 This function gains access to the SPS2 kernel module. For developers using the SPS2
Core Function Set only, it should be the first function invoked. It performs a number of functions:

1. It connects to the SPS2 device
2. It ensures that the SPS2 device supports the current version and hasn’t been already

opened. If it has been already opened, it merely duplicates the descriptor from the
previous open. This has important ramifications which are outlined below.

3. It maps the Emotion Engine (EE) registers to SPS2_EE_REGISTERS_START and aborts the
application if this is not possible. This allows programmers to be sure that, if sps2Init
returns, the EE registers will be mapped starting at SPS2_EE_REGISTERS_START. This
allows programmers to write applications that use the fixed pointers to the EE registers
defined in sps2registers.h such as EE_D9_CHCR.

4. It maps the Graphics Synthesizer (GS) registers to SPS2_GS_REGISTERS_START allowing,
like in #3, developers to use fixed functions such as DPUT_GS_BGCOLOR.

5. It maps the scratch pad memory to SPS2_SCRATCH_PAD_START allowing, like in #3,
developers to use fixed pointers such as SCRATCH_PAD.

6. It maps the Vector Unit (VU) memory to SPS2_VU_MEMORY_START allowing, once again as
in #3, developers to access fixed pointers such as VU0_MICRO_MEM.

7. It enables access to COP2 (VU0)
8. It enables the EI & DI instructions to enable & disable interrupts.

In order for #3-#6 to succeed, the virtual memory area 0x00010000-0x0004ffff must be

free once your application is loaded. For most normal applications, this should not be a problem,
however, developers with special link scripts may need to adjust their scripts to ensure this
memory area is free. In the unlikely event that this is not possible, sps2Init cannot be used and
developers are directed to _sps2Open in the SPS2 Extended Function Set.

 Because of step #2, multiple instances of sps2Open end up sharing the same resources,
even though they are assigned different descriptors. This means:

• Memory allocated by sps2Allocate will not be released until the all of the descriptors
have been closed up using sps2Release unless the memory is explicitly released with
sps2Free. Basically this means that you shouldn’t assume that sps2Release will free up
all your memory, you should explicitly free up all your allocations instead.

Copyright © 2002, 2003 Terratron Technologies Inc. 30

 SPS2 Version 0.4.0

• The Emotion Engine and Graphics Synthesizer registers as well as the Scratch Pad and
Vector Unit memories won’t go away just because one descriptor is closed. They will
only go away once all of the descriptors have been closed. This is good because a
module that chooses to issue sps2Init then sps2Release need not worry that by
releasing it’s descriptor it will cause the application to stop working by releasing the fixed
pointers.

Copyright © 2002, 2003 Terratron Technologies Inc. 31

 SPS2 Version 0.4.0

sps2Release

Prototype:
 static inline int sps2Release(int iSPS2Device);

Non-inline version in libsps2util:
 int sps2UNIRelease (int iSPS2Device);

Parameters:
 iSPS2Device – An SPS2 device descriptor returned by sps2Init

Return Value:
 None

See Also:
 sps2Init

Comments:
 This function releases an SPS2 device descriptor. If it is the last SPS2 device descriptor
being released, then it frees up all memory that hasn’t been explicitly freed, and unmaps the
Emotion Engine and Graphics Synthesizer registers as well as the Scratch Pad and Vector Unit
memories from SPS2_EE_REGISTERS_START, SPS2_GS_REGISTERS_START,
SPS2_SCRATCH_PAD_START and SPS2_VU_MEMORY_START respectively.

Caution
 All of the sps2Memory_t structures, however are not freed (only the actual memory they
describe) which could cause a memory leak unless the developer explicitly frees up the memory
by using sps2Free.

Copyright © 2002, 2003 Terratron Technologies Inc. 32

 SPS2 Version 0.4.0

sps2Allocate

Prototype:
 static inline sps2Memory_t *sps2Allocate(unsigned long ulSize,
 int iMapOptions,
 int iDeviceHandle);

Non-inline version in libsps2util:
 sps2Memory_t *sps2UNIAllocate(unsigned long ulSize,
 int iMapOptions,
 int iDeviceHandle);

Parameters:
 ulSize -- The number of bytes to allocate, which will be rounded up by the block size
 iMapOptions – One of:

 SPS2_MAP_BLOCK_4K to map memory in 4K increments,
 SPS2_MAP_BLOCK_8K to map memory in 8K increments,
 SPS2_MAP_BLOCK_16K to map memory in 16K increments,
 SPS2_MAP_BLOCK_32K to map memory in 32K increments,
 SPS2_MAP_BLOCK_64K to map memory in 64K increments,
 SPS2_MAP_BLOCK_128K to map memory in 128K increments

bitwise-ORed with one of:
 SPS2_MAP_CACHED to allow memory be cached (the default value),
 SPS2_MAP_UNCACHED to allocate this memory as uncached
 SPS2_MAP_UCAB to allocate this memory as uncached accelerated

 iDeviceHandle – An SPS2 device descriptor returned by sps2Init or _sps2Open

Return Value:

• On success, an sps2Memory_t structure
• On failure, -1, most likely due to insufficient memory

See Also:
 sps2Init, _sps2Open, sps2Free, sps2FlushCache, sps2GetPhysicalAddress

Comments:
 THE ONLY BLOCK SIZE SUPPORTED WITH THIS RELEASE IS 4K.
 Memory returned by sps2Allocate is only physically contiguous in increments of the
block size. This means that if you allocate 8K in 4K blocks, bytes 0-4095 will be physically
contiguous and bytes 4096-8191 will be physically contiguous. You should NOT treat it as a
single 8K chunk! Whereas it is okay to do so while populating the data (e.g. reading in a 8K
texture from a file into the memory), when you use it to perform DMA transfers you will have to
treat it as a sequence of 2 consecutive 4K chunks.

 Remember, the whole allocation is contiguous in virtual space, but only individual chunks
are contiguous in physical space. Your application understands virtual space, the DMA controller
understands physical space. Also, for future versions, when you try to allocate larger increments,
remember that there is less of a chance that your allocation will succeed.

 Memory allocated with sps2Allocate is freed with sps2Free.
 To get the virtual address of your memory, use the pvStart field in the sps2Memory_t
structure that is returned. pvStart IS THE ONLY FIELD OF INTEREST TO DEVELOPERS.

Copyright © 2002, 2003 Terratron Technologies Inc. 33

 SPS2 Version 0.4.0

 To get the physical address of any offset within your memory, use the
sps2GetPhysicalAddress function.
 If you are using cacheable memory and would like to flush it in order to start a DMA
transfer, use sps2FlushCache.

Copyright © 2002, 2003 Terratron Technologies Inc. 34

 SPS2 Version 0.4.0

sps2Free

Prototype:
 static inline void sps2Free(sps2Memory_t *pMapping);

Non-inline version in libsps2util:
 void sps2UNIFree(sps2Memory_t *pMapping);

Parameters:
 pMapping – An sps2Memory_t structure returned by sps2Allocate or sps2Remap

Return Value:
 None

See Also:
 sps2Init, _sps2Open, sps2Allocate, sps2Remap

Comments:
 This function releases memory allocated through sps2Allocate. If the memory has
been remapped one or more times by sps2Remap then this will only release the memory once all
mappings (including the original one) have been freed.

It also releases the memory associated with the sps2Memory_t structure.

Copyright © 2002, 2003 Terratron Technologies Inc. 35

 SPS2 Version 0.4.0

sps2Remap

Prototype:
 static inline sps2Memory_t *sps2Remap(sps2Memory_t *pOriginalArea,
 int iMapOptions,
 int iDeviceHandle);

Non-inline version in libsps2util:
 sps2Memory_t *sps2UNIRemap(sps2Memory_t *pOriginalArea,
 int iMapOptions,
 int iDeviceHandle);

Parameters:
 pOriginalArea – An sps2Memory_t structure returned by sps2Allocate or sps2Remap
 iMapOptions – One of:

 SPS2_MAP_BLOCK_4K to map memory in 4K increments,
 SPS2_MAP_BLOCK_8K to map memory in 8K increments,
 SPS2_MAP_BLOCK_16K to map memory in 16K increments,
 SPS2_MAP_BLOCK_32K to map memory in 32K increments,
 SPS2_MAP_BLOCK_64K to map memory in 64K increments,
 SPS2_MAP_BLOCK_128K to map memory in 128K increments

bitwise-ORed with one of:
 SPS2_MAP_CACHED to allow memory be cached (the default value),
 SPS2_MAP_UNCACHED to allocate this memory as uncached

 iDeviceHandle – An SPS2 device descriptor returned by sps2Init or _sps2Open

Return Value:

• On success, an sps2Memory_t structure
• On failure, -1, most likely due to insufficient memory

See Also:
 sps2Init, _sps2Open, sps2Allocate, sps2Free

Comments:
 This function allows you to “remap” an area allocated through sps2Allocate. The
primary reason for doing this is to allow the programmer to have both cached and uncached
pointers to the same area of memory (i.e. use sps2Allocate with SPS2_MAP_CACHED then use
sps2Remap with SPS2_MAP_UNCACHED). The block size should be the same as the one used with
sps2Allocate.

 sps2Free will only release the memory once all mappings of an area have been freed.

Caution:
 Developers are cautioned to be very careful when using both cached and uncached
pointers to the same area of memory. If within a single cache frame the memory is accessed
both cached and uncached without an intermediate sps2FlushCache, the system can crash.

Copyright © 2002, 2003 Terratron Technologies Inc. 36

 SPS2 Version 0.4.0

sps2GetPhysicalAddress

Prototype:
 static inline unsigned long sps2GetPhysicalAddress(void *pvAddress,
 sps2Memory_t *pDescriptor);

Non-inline version in libsps2util:
 unsigned long sps2UNIGetPhysicalAddress(void *pvAddress,
 sps2Memory_t *pDescriptor);

Parameters:
 pvAddress – The virtual address for which to retrieve a physical address
 pDescriptor – The sps2Memory_t structure returned by sps2Allocate or sps2Remap that
corresponds to this pointer.

Return Value:

• On success, returns the physical address of pvAddress
• On failure, the application is terminated.

See Also:
 sps2Allocate, sps2Remap

Comments:
 This function gives the physical address for a virtual address. This is important because
in order to perform a DMA transfer, the DMA controller needs to be given a physical address.

 The reason this function terminates the application if a bad pointer or descriptor is passed
in is that it is very likely that the function is called immediately before a DMA transfer. This will
prevent the developer from accidentally passing an error return value to the DMA controller as the
address and causing the system to crash. Basically, if this function were to return an error code,
the program is already sufficiently broken to warrant an exit.

Copyright © 2002, 2003 Terratron Technologies Inc. 37

 SPS2 Version 0.4.0

sps2FlushCache

Prototype:
 static inline int sps2FlushCache(int iDeviceHandle);

Non-inline version in libsps2util:
 int sps2UNIFlushCache(int iDeviceHandle);

Parameters:
 iDeviceHandle – An SPS2 device descriptor returned by sps2Init or _sps2Open

Return Value:

• zero on success
• non-zero if an invalid device handle was specified

See Also:
 sps2Init, _sps2Open

Comments:
 This function flushes all caches. This is beneficial if the memory returned by
sps2Allocate or sps2Remap was being cached. Flushing the cache allows DMA transfers to
properly transfer all the contents of the memory.

Copyright © 2002, 2003 Terratron Technologies Inc. 38

 SPS2 Version 0.4.0

sps2WaitForDMA

Prototype:
 static inline int sps2WaitForDMA(int iChannel,
 int iDeviceHandle);

Non-inline version in libsps2util:
 int sps2UNIWaitForDMA(int iChannel,
 int iDeviceHandle);

Parameters:
 iChannel – the DMA channel to wait for.
 iDeviceHandle – An SPS2 device descriptor returned by sps2Init or _sps2Open

Return Value:

• zero on success
• non-zero if an invalid device handle or DMA channel was specified

See Also:
 sps2Init, _sps2Open

Comments:
 This function allows the scheduler to run other applications on the system while a transfer
is in progress. If your application is time critical and must continue the instant that the DMA
transfer has ended, then you should consider creating a spinlock loop instead.

 This function returns after the CHCR register corresponding to the channel has the STR
bit cleared.

Copyright © 2002, 2003 Terratron Technologies Inc. 39

 SPS2 Version 0.4.0

sps2SetOperationMode

Prototype:
 static inline int sps2SetOperationMode(int iSupervisorMode,
 int iDeviceHandle);

Non-inline version in libsps2util:
 static inline int sps2UNISetOperationMode(int iSupervisorMode,
 int iDeviceHandle);

Parameters:
 iSupervisorMode – non-zero to switch to supervisor mode, zero to switch
to user mode
 iDeviceHandle – An SPS2 device descriptor returned by sps2Init or _sps2Open

Return Value:

• zero on success
• non-zero if an invalid device handle or DMA channel was specified

See Also:
 sps2Init, _sps2Open

Comments:
 This function sets the operation mode of the current process. It can toggle between
supervisor mode and user mode. Typically applications run in user mode and the kernel runs in
kernel mode. By switching a process to supervisor mode, it increases the likelihood that it’s the
only process running in that mode (unless many processes start doing this). The performance
counters on the PS2 can isolate measurements to a specific operation mode. If this process is
the only process in supervisor mode, the counters can more accurately isolate measurements to
your process.

 Note that there may be adverse side-effects to running in supervisor mode. This feature
is really only intended to isolate measurements instead of having applications switch to
supervisor mode by default.

Copyright © 2002, 2003 Terratron Technologies Inc. 40

 SPS2 Version 0.4.0

SPS2 Extended Function Set
Reference

 The SPS2 Extended Function Set is a superset of the SPS2 Core Function Set. It
includes all of the functions in the core function set as well as a few more. There are two major
differences between the core and extended function sets.

 First, the core function set contains a function called sps2Init. This function opens up
the SPS2 Kernel Module and prepares a number of preset mappings for the Emotion Engine and
Graphics Synthesizer registers as well as the Scratch Pad and Vector Unit memories and it
enables access to COP2 (VU0). Because these preset mappings use a fixed location,
applications using these registers or memories can use predetermined pointers to achieve
maximum efficiency while minimizing the difference between application development within the
Linux environment and development within the native PS2 environment.

 The extended function set defines a simpler function called _sps2Open that performs
less initialization than sps2Init. Specifically, _sps2Open does not map the registers and
memories as sps2Init does, but instead, the SPS2 Extended Function Set provides a number of
additional functions to map these registers and memories to any location the developer desires.
Whereas this provides slightly more flexibility to the developer, there is a tradeoff. Because the
developer does not know in advance exactly where these registers and memories will be mapped
to, they must use offset functions to access the individual registers within the memory mapping
(as opposed to predefined pointers that are made available in the SPS2 Core Function Set).

 To illustrate the example, consider the following two code segments that are intended to
set the value of the EE_D0_QWC register to 12.

First, using the SPS2 Core Function Set:

int iSPS2Device=sps2Init();
*EE_D0_QWC=0;
sps2Release(iSPS2Device);

Now, using the SPS2 Extended Function Set

int iSPS2Device=_sps2Open();
void *pvEERegisters=_sps2MapEERegisters(0,iSPS2Device);
*EE_D0_QWC_OFF (pvEERegisters)=0;
_sps2Close(iSPS2Device);

In some obscure situations (where custom linking is used for the application), it is
possible for the first example to fail. Typically the developer would be able to modify their link
script so that that would not become an issue. On the other hand, the second example would
work even with the most obscure link scripts, but the developer would now need to distribute the
“base pointer” pvEERegisters throughout the application, possibly by defining it as a global
variable.

The second difference between the function sets is that the device handles in the SPS2

Extended Function Set are not shared. This means that if a process opens the device, allocates
some memory (or maps some of the registers) and then closes the devices, the allocations and
mappings are freed. This is true even if the device was opened multiple times before being
closed. On the other hand, with the core set, if the device is initialized multiple times with
sps2Init, none of the resources are released until all instances are closed. The prior situation
makes sense for a developer of an independent module who wishes to create a library of

Copyright © 2002, 2003 Terratron Technologies Inc. 41

 SPS2 Version 0.4.0

functions or classes that work independently of the rest of the system. The latter example makes
more sense for most developers because they can open and close the module within their
application repeatedly without having to worry about accidentally unmapping some registers
being used by another function.

Copyright © 2002, 2003 Terratron Technologies Inc. 42

 SPS2 Version 0.4.0

_sps2Open

Prototype:
 static inline int sps2Open();

Non-inline version in libsps2util:
 int sps2UNIOpen();

Parameters:
 None

Return Value:

• If successful, a descriptor to the SPS2 device (>=0)
• If unsuccessful, an error number <0

See Also:
 sps2Init, _sps2Close

Comments:
 This function gains access to the SPS2 kernel module.

1. It connects to the SPS2 device
2. It ensures that the SPS2 device supports the current version.

Copyright © 2002, 2003 Terratron Technologies Inc. 43

 SPS2 Version 0.4.0

_sps2Close

Prototype:
 static inline int _sps2Close(int iSPS2Device);

Non-inline version in libsps2util:
 int _sps2UNIClose(int iSPS2Device);

Parameters:
 iSPS2Device – An SPS2 device descriptor returned by _sps2Open

Return Value:
 None

See Also:
 _sps2Open

Comments:
 This function releases an SPS2 device descriptor. This will release the memory that has
been allocated and unmap any of the Emotion Engine and Graphics Synthesizer registers as well
as Scratch Pad and Vector Unit memories that may have been mapped.

Caution
 All of the sps2Memory_t structures, however are not freed (only the actual memory they
describe) which could cause a memory leak unless the developer explicitly frees up the memory
by using sps2Free.

Copyright © 2002, 2003 Terratron Technologies Inc. 44

 SPS2 Version 0.4.0

_sps2MapEERegisters

Prototype:
 static inline int _sps2MapEERegisters(void *pvWhere,
 int iSPS2Device);

Non-inline version in libsps2util:
 int _sps2UNIMapEERegisters(void *pvWhere,
 int iSPS2Device);

Parameters:
 pvWhere – The desired location at which to map the registers (can be zero). If this
location is not suitable, the library will map the registers at an appropriate location

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, the base pointer of the address at which the registers have been mapped
• On failure, MAP_FAILED (-1)

See Also:
 _sps2Open

Comments:
 This function attempts to map the Emotion Engine registers at a specified location. If the
location is zero or unsuitable for the mapping, the function will map the registers elsewhere and
indicate, through its return value, where they have been mapped.

 There are a number of preprocessor macros defined in sps2registers.h that can be
used to determine the exact location of a specific Emotion Engine register relative to the base
pointer.

These macros are in the form of EE_*_OFF(baase pointer), such as EE_D0_CHCR_OFF(base
pointer). The value of base pointer that should be passed in is the return value of this
function.

 These registers will be unmapped once the device handle has been closed with
_sps2Close.

Copyright © 2002, 2003 Terratron Technologies Inc. 45

 SPS2 Version 0.4.0

_sps2MapGSRegisters

Prototype:
 static inline int _sps2MapGSRegisters(void *pvWhere,
 int iSPS2Device);

Non-inline version in libsps2util:
 int _sps2UNIMapGSRegisters(void *pvWhere,
 int iSPS2Device);

Parameters:
 pvWhere – The desired location at which to map the registers (can be zero). If this
location is not suitable, the library will map the registers at an appropriate location

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, the base pointer of the address at which the registers have been mapped
• On failure, MAP_FAILED (-1)

See Also:
 _sps2Open

Comments:
 This function attempts to map the Graphics Synthesizer registers at a specified location.
If the location is zero or unsuitable for the mapping, the function will map the registers elsewhere
and indicate, through its return value, where they have been mapped.

 There are a number of preprocessor macros defined in sps2registers.h that can be
used to determine the exact location of a specific Graphics Synthesizer register relative to the
base pointer.

These macros are in the form of DPUT_GS_*_OFF(base pointer, value), such as
DPUT_GS_BGCOLOR_OFF(base pointer, value). The value of base pointer that should be
passed in is the return value of this function.

 These registers will be unmapped once the device handle has been closed with
_sps2Close.

Copyright © 2002, 2003 Terratron Technologies Inc. 46

 SPS2 Version 0.4.0

_sps2MapVUMemory

Prototype:
 static inline int _sps2MapVUMemory(void *pvWhere,
 int iSPS2Device);

Non-inline version in libsps2util:
 int _sps2UNIMapVUMemory(void *pvWhere,
 int iSPS2Device);

Parameters:
 pvWhere – The desired location at which to map the memory (can be zero). If this
location is not suitable, the library will map the memory at an appropriate location

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, the base pointer of the address at which the Vector Unit memories have
been mapped

• On failure, MAP_FAILED (-1)

See Also:
 _sps2Open

Comments:
 This function attempts to map the Vector Unit memories at a specified location. If the
location is zero or unsuitable for the mapping, the function will map the memories elsewhere and
indicate, through its return value, where they have been mapped.

 There are a number of preprocessor macros defined in sps2vumemory.h that can be
used to determine the exact location of a specific Vector Unit memory relative to the base pointer.

These macros are VU0_MEM_OFF(base pointer), VU0_MICRO_MEM_OFF(base pointer),
VU1_MEM_OFF(base pointer) and VU1_MICRO_MEM_OFF(base pointer). The value of base
pointer that should be passed in is the return value of this function.

 These memories will be unmapped once the device handle has been closed with
_sps2Close.

Copyright © 2002, 2003 Terratron Technologies Inc. 47

 SPS2 Version 0.4.0

_sps2MapScratchPad

Prototype:
 static inline int _sps2MapScratchPad(void *pvWhere,
 int iSPS2Device);

Non-inline version in libsps2util:
 int _sps2UNIMapScratchPad(void *pvWhere,
 int iSPS2Device);

Parameters:
 pvWhere – The desired location at which to map the memory (can be zero). If this
location is not suitable, the library will map the memory at an appropriate location

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, the base pointer of the address at which the Scratch Pad memory has been
mapped

• On failure, MAP_FAILED (-1)

See Also:
 _sps2Open

Comments:
 This function attempts to map the Scratch Pad memory at a specified location. If the
location is zero or unsuitable for the mapping, the function will map the memory elsewhere and
indicate, through its return value, where they have been mapped.

 There is a preprocessor macro defined in sps2scratchpad.h that is offered for
compatibility with the functionality of the other _sps2Map* functions.

This macro is called SCRATCH_PAD_OFF(base pointer). The value of base pointer that should
be passed in is the return value of this function. Since there is only one scratch pad memory this
function does nothing except for return the base pointer.

 The memory will be unmapped once the device handle has been closed with
_sps2Close.

Copyright © 2002, 2003 Terratron Technologies Inc. 48

 SPS2 Version 0.4.0

_sps2EnableCOP2Access

Prototype:
 static inline int _sps2EnableCOP2Access(int iSPS2Device);

Non-inline version in libsps2util:
 int _sps2UNIEnableCOP2Access(int iSPS2Device);

Parameters:

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, 0
• On failure, non-zero

See Also:
 _sps2Open

Comments:
 This function enables access to COP2 and VU0 Macro Mode instructions. This allows
you to use macro mode instructions for VU0 as well as to control VU0 and VU1 with instructions
such as ctc2 and cfc2.

Copyright © 2002, 2003 Terratron Technologies Inc. 49

 SPS2 Version 0.4.0

_sps2SetEIDIEnabled

Prototype:
 static inline int _sps2SetEIDIEnabled(int iEnable, int iSPS2Device);

Non-inline version in libsps2util:
 int _sps2UNISetEIDIEnabled(int iEnable, int iSPS2Device);

Parameters:

iEnable – Non-zero to enable, zero to disable. Note that zero is ignored and the
instructions cannot be disabled once they are enabled.

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, 0
• On failure, non-zero

See Also:
 _sps2Open

Comments:
 This function enables the EI and DI instructions to enable and disable interrupts
respectively. This is useful in cases where an interrupt could “gobble” up some data you’re trying
to retrieve, such as the FINISH bit that can be set by the GIF/GS.

 Disabling interrupts for a prolonged period of time could be dangerous and should be
thoroughly tested in your application if not avoided altogether.

 This feature, like enabling COP2 access, cannot be disabled. This is because there is no
enable/disable “stack” which keeps track of which functions are enabling and disabling. This
prevents one library or function from disabling the instructions when another library or function
requires them. There is no harm in having these functions enabled so long as you don’t embed
EI or DI instructions in your code.

Copyright © 2002, 2003 Terratron Technologies Inc. 50

 SPS2 Version 0.4.0

SPS2 Utility Library, libsps2util

The SPS2 Utility Library, also known as libsps2util defines non-inline versions of the
various functions that comprise the SPS2 Core Function Set and the SPS2 Extended Function
Set. These functions will NOT be described in detail here, instead, readers are directed to the
documentation of the aforementioned function sets for details. All non-inline functions that begin
with sps2UNI have counterparts in the SPS2 Core Function Set and all non-inline functions that
begin with _sps2UNI have counterparts in the SPS2 Extended Function Set.

In summary, these functions are, for the SPS2 Core Function Set:
sps2UNIInit
sps2UNIRelease
sps2UNIAllocate
sps2UNIRemap
sps2UNIFree
sps2UNIGetPhysicalAddress
sps2UNIFlushCache
sps2UNIWaitForDMA
sps2UNISetOperationMode

And for the SPS2 Extended Function Set:
_sps2UNIOpen
_sps2UNIClose
_sps2UNIMapEERegisters
_sps2UNIMapGSRegisters
_sps2UNIMapVUMemory
_sps2UNIMapScratchPad
_sps2UNIEnableCOP2Access
_sps2UNISetEIDIEnabled

In addition, libsps2util introduces a number of screen handling routines. All of these routines
have a prefix of sps2UScreen. Their functionality is described in the following pages.
Important: sps2UScreenInit must be called first before any of the other sps2UScreen
functions.

All libsps2util functions are declared in the include file sps2util.h. In order to build the library, and
to link to it, please refer to the installation chapter earlier in this manual.

Copyright © 2002, 2003 Terratron Technologies Inc. 51

 SPS2 Version 0.4.0

Printf Functions
New with SPS2 0.4.0 are a set of functions used for printing strings directly to the GS. Even
though they assume that the GS is initialized with sps2ScreenInit, there is nothing to prevent
them from working with other screen configurations. The printf functions are:
sps2UPrintf
sps2UPrintfRender
sps2UPrintfSetWindow
sps2UPrintfGetWindow
sps2UPrintfSetZ
sps2UPrintfGetZ
sps2UPrintfSetPos
sps2UPrintfGetPos
sps2UPrintfFontHeight
sps2UPrintfStringWidth

In addition, a tool has been included in the tools directory that can convert an X-Windows font to
the format used by the printf functions. Use xlsfonts to list the fonts installed on your system and
xfd to preview a font before converting it with the x_font_to_sps2_u_font utility in the tools
directory.

Printf data is “queued” using the sps2UPrintf function and only displayed once sps2UPrintfRender
is called. The printf queue allows for 8192 characters maximum before it fills up – after which any
data sent to sps2UPrintf before calling sps2UPrintfRender will be discarded.

Note that for all functions that require a font as a parameter, 0 can be passed in for the font in
which case a built in default font will be used.

The code on the following page is a sample use of a number of the printf functions. Note that it
uses a font store in font_avant.h. This font can be created by running:

x_font_to_sps2_u_font \
 "-urw-avantgarde-demibold-o-normal--0-0-0-0-p-0-iso8859-1" \
 fontAvant > font_avant.h

Copyright © 2002, 2003 Terratron Technologies Inc. 52

 SPS2 Version 0.4.0

#include <sps2lib.h>
#include <sps2util.h>

#include "font_avant.h"

int main() {
 int iSPS2=sps2Init();
 int iFrame=0;
 int iX, iY, iW, iH;

 sps2UScreenInit(0);
 sps2UPrintfGetWindow(&iX, &iY, &iW, &iH);

 while(1) {
 sps2UScreenClear(0,0,0);
 DPUT_GS_BGCOLOR(0xff);
 sps2UPrintf(0, "Hello \37700FF00World\nHow's it going?");
 sps2UPrintf(&fontAvant, "Very \377FF0000Well\nThank you\n");

 sps2UPrintf(0, "Back to normal\376(100,100)At 100,100!\n"
 "\377%02XFF00\376(%i, %i)Center!", (++iFrame) & 0xff,
 (iW-sps2UPrintfStringWidth(0, "Center!"))/2,
 (iH-sps2UPrintfFontHeight(0))/2);

 sps2UPrintf(0, "\376(%i, 150)Moving.", iFrame % 100);
 sps2UPrintfRender();
 DPUT_GS_BGCOLOR(0);
 sps2UScreenSwap();
 }

}

Copyright © 2002, 2003 Terratron Technologies Inc. 53

 SPS2 Version 0.4.0

sps2UScreenInit

Prototype:
 void sps2UScreenInit(int iSuppressSignalHandlers);

Parameters:
 iSuppressSignalHandlers – set this to a non-zero value if you do not want
sps2UScreenInit to trap all signals with handlers that close the virtual console before aborting
your program.

Return Value:

• None

See Also:
 sps2UScreenShutdown

sps2UScreenGetVideoMode

Comments:
This function is used to initialize the screen. The current implementation will autodetect the video
hardware and select an appropriate resolution, creating a virtual console. The screen is initialized
for PSMCT32 pixel format and a 24 bit Z buffer, with double buffering. The display resolution is
set as follows:

For NTSC, the screen is set to 640x448
For VESA, the screen is set to 640x480
For PAL, the screen is set to 640x512

If the library has trouble detecting the video mode, it will default to VESA.

Caution
Please make sure to call sps2UScreenShutdown after calling sps2UScreenInit. Failure to do so
may not properly shut down your virtual console, which would require a reboot to correct (the
machine does not crash; the console is just left in an unusable state).

sps2UScreenInit uses the atexit function to try to invoke sps2UScreenShutdown for you. In
addition, unless you disallow it, sps2UScreenInit will trap more or less all signals (except
SIGSTOP and SIGCONT) and gracefully abort upon receipt of a signal. If you need to create your
own signal handlers, you have one of two choices:

1. Create them after invoking sps2UScreenInit(0), understanding that
sps2UScreenShutdown will remove them.

2. Make sure you trap all of the signals by defining a signal handler that will abort gracefully.
For example, the following signal handler will call sps2UScreenShutdown before aborting:

/**
 * This is our signal handler. Since it doesn't really know what to do when
 * it gets a signal it will just abort the program. This beats the program
 * crashing when it gets the unknown signal because the display code will
 * have a chance to shut itself down.
 * iSignal is the signal being delivered
 */
void signalHandler(int iSignal) {
 printf("Quitting on signal %i\n", iSignal);
 exit(0);
}

Copyright © 2002, 2003 Terratron Technologies Inc. 54

 SPS2 Version 0.4.0

Also, trap all the signals with the following code snippet:

#include <signal.h>

int iSignalLooper;

for(iSignalLooper=0; iSignalLooper<128; iSignalLooper++) {
 signal(iSignalLooper,signalHandler);
}

If you do not need to create your own signal handlers, then merely call sps2UScreenInit(0) and
everything will be taken care of for you.

Copyright © 2002, 2003 Terratron Technologies Inc. 55

 SPS2 Version 0.4.0

sps2UScreenShutdown

Prototype:
 void sps2UScreenShutdown();

Parameters:
 None

Return Value:

• None

See Also:
 sps2UScreenInit

Comments:
 This function is used to destroy the virtual console created by sps2UScreenInit and to
revert the display to its original settings. Also, if sps2UScreenInit trapped the signal handlers,
then this function will restore them.

Copyright © 2002, 2003 Terratron Technologies Inc. 56

 SPS2 Version 0.4.0

sps2UScreenSwap

Prototype:
 void sps2UScreenSwap();

Parameters:
 None

Return Value:

• None

See Also:
 sps2UScreenInit, sps2UScreenClear

Comments:
 This function performs two tasks:

1. It waits for VSync
2. It swaps the display and draw buffers (what was being drawn is now being displayed and

vice-versa)

 Usually, after calling this function, the sps2UScreenClear function would be called to
clear the new draw buffer.

This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 57

 SPS2 Version 0.4.0

sps2UScreenClear

Prototype:
 void sps2UscreenClear(int iRed, int iGreen, int iBlue);

Parameters:
 iRed – The red component of the color to clear the draw buffer to (0-255)
 iGreen – The green component of the color to clear the draw buffer to (0-255)
 iBlue – The blue component of the color to clear the draw buffer to (0-255)

Return Value:

• None

See Also:
 sps2UScreenInit, sps2UScreenSwap

Comments:
 This function clears the current draw buffer to the color specified by (iRed, iGreen, and
iBlue). This function normally follows a call to sps2UScreenSwap;

This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 58

 SPS2 Version 0.4.0

sps2UScreenGetFirstFreeGSPage

Prototype:
 unsigned int sps2UScreenGetFirstFreeGSPage ();

Parameters:
 None

Return Value:

• The page number of the first available page in GS memory after the double buffers and
the Z buffer.

See Also:
 sps2UScreenInit
 sps2UScreenGetZPtr
 sps2UScreenGetDrawBuff2
 sps2UScreenGetDrawBuff1
 sps2UScreenGetDrawBuffCurrent

Comments:
This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 59

 SPS2 Version 0.4.0

sps2UScreenGetZPtr

Prototype:
 unsigned int sps2UScreenGetZPtr ();

Parameters:
 None

Return Value:

• The first page number of the Z buffer in GS memory.

See Also:
 sps2UScreenInit
 sps2UScreenGetFirstFreeGSPage
 sps2UScreenGetDrawBuff1
 sps2UScreenGetDrawBuff2
 sps2UScreenGetDrawBuffCurrent

Comments:
This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 60

 SPS2 Version 0.4.0

sps2UScreenGetDrawBuff1

Prototype:
 unsigned int sps2UScreenGetDrawBuff1();

Parameters:
 None

Return Value:

• The first page in GS memory of the first draw buffer from the double buffer.

See Also:
 sps2UScreenInit
 sps2UScreenGetFirstFreeGSPage
 sps2UScreenGetZPtr
 sps2UScreenGetDrawBuff2
 sps2UScreenGetDrawBuffCurrent

Comments:
This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 61

 SPS2 Version 0.4.0

sps2UScreenGetDrawBuff2

Prototype:
 unsigned int sps2UScreenGetDrawBuff2();

Parameters:
 None

Return Value:

• The first page in GS memory of the second draw buffer from the double buffer.

See Also:
 sps2UScreenInit
 sps2UScreenGetFirstFreeGSPage
 sps2UScreenGetZPtr
 sps2UScreenGetDrawBuff1
 sps2UScreenGetDrawBuffCurrent

Comments:
This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 62

 SPS2 Version 0.4.0

sps2UScreenGetDrawBuffCurrent

Prototype:
 unsigned int sps2UScreenGetDrawBuffCurrent();

Parameters:
 None

Return Value:

• The first page in GS memory of the draw buffer from the double buffer that is currently
being drawn to (i.e. not the display buffer).

See Also:
 sps2UScreenInit
 sps2UScreenGetFirstFreeGSPage
 sps2UScreenGetZPtr
 sps2UScreenGetDrawBuff1
 sps2UScreenGetDrawBuff2

Comments:
This function will return either sps2UScreenGetDrawBuff1() or sps2UScreenGetDrawBuff2()

This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 63

 SPS2 Version 0.4.0

sps2UScreenGetWidth

Prototype:
 unsigned int sps2UScreenGetWidth();

Parameters:
 None

Return Value:

• The width, in number of pixels, of the display resolution.

See Also:
 sps2UScreenInit
 sps2UScreenGetHeight

Comments:
The current implementation of sps2UScreen always sets the screen width to 640 pixels.

This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 64

 SPS2 Version 0.4.0

sps2UScreenGetHeight

Prototype:
 unsigned int sps2UScreenGetHeight();

Parameters:
 None

Return Value:

• The height, in number of pixels, of the display resolution.

See Also:
 sps2UScreenInit
 sps2UScreenGetWidth

sps2UScreenGetZDepth
sps2UScreenGetVideoMode
sps2UScreenGetPixelFormat

Comments:
The current implementation of sps2UScreen always sets the screen height to:

• 480 for sps2UScreenGetVideoMode() == SPS2U_SCR_VESA
• 448 for sps2UScreenGetVideoMode() == SPS2U_SCR_NTSC
• 512 for sps2UScreenGetVideoMode() == SPS2U_SCR_PAL

This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 65

 SPS2 Version 0.4.0

sps2UScreenGetZDepth

Prototype:
 unsigned int sps2UScreenGetZDepth();

Parameters:
 None

Return Value:

• The largest Z value allowed in the Z buffer.

See Also:
 sps2UScreenInit
 sps2UScreenGetWidth
 sps2UScreenGetHeight

sps2UScreenGetVideoMode
sps2UScreenGetPixelFormat

Comments:
This current implementation of sps2UScreen always uses a 24 bit Z buffer. This function will
always return 0xffffff.

This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 66

 SPS2 Version 0.4.0

sps2UScreenGetVideoMode

Prototype:
 unsigned int sps2UScreenGetVideoMode();

Parameters:
 None

Return Value:

The video mode auto-detected by sps2UScreenInit. This is one of:
• SPS2U_SCR_VESA for VESA
• SPS2U_SCR_NTSC for NTSC
• SPS2U_SCR_PAL for PAL

See Also:
 sps2UScreenInit
 sps2UScreenGetWidth
 sps2UScreenGetHeight

sps2UScreenGetZDepth
sps2UScreenGetPixelFormat

Comments:
If sps2UScreenInit cannot properly detect your display type, it will assume VESA.

This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 67

 SPS2 Version 0.4.0

sps2UScreenGetPixelFormat

Prototype:
 unsigned int sps2UScreenGetPixelFormat();

Parameters:
 None

Return Value:

The pixel format of the double buffers.

See Also:
 sps2UScreenInit
 sps2UScreenGetWidth
 sps2UScreenGetHeight

sps2UScreenGetZDepth
sps2UScreenGetVideoMode

Comments:
In this current implementation of sps2UScreen, this will always return zero, which corresponds to
the PSMCT32 pixel format.

This function may only be used after sps2UScreenInit has been called but before
sps2UScreenShutdown has been called.

Copyright © 2002, 2003 Terratron Technologies Inc. 68

 SPS2 Version 0.4.0

sps2UScreenSetVNCUpdateRate

Prototype:
 void sps2UScreenSetVNCUpdateRate(int iUpdateRate);

Parameters:
 iUpdateRate – Sets the update rate for VNC captures. By default it is set to 15 – 1 in
every 15 frames are captured.

Return Value:

None

See Also:
 sps2UScreenDisableVNC

Comments:
VNC updates only happen if the GSVNC VNC server is running and there is a client connected.
This sets the frequency at which screen shots are taken and sent over VNC.

Copyright © 2002, 2003 Terratron Technologies Inc. 69

 SPS2 Version 0.4.0

sps2UScreenDisableVNC

Prototype:
 void sps2UScreenDisableVNC();

Parameters:
 None

Return Value:

None

See Also:
 sps2UScreenSetVNCUpdateRate

Comments:
This disables the use of GSVNC for a process. Note that it should be called prior to
sps2UScreenInit in order to avoid allocating memory for GSVNC. Before calling this function,
note that:

• The memory overhead imposed by GSVNC support is shared across _all_ GSVNC

applications. GSVNC uses memory very conservatively
• No GSVNC updates occur if the VNC server is not running or if there are no clients

connected to the VNC server, so the overhead is minimal.
• A number of benefits can be derived from using GSVNC, including some debugging functions

(allowing you to view various GS buffers), and the ability to pause an application as well as
take screen shots.

Copyright © 2002, 2003 Terratron Technologies Inc. 70

 SPS2 Version 0.4.0

sps2UPrintf

Prototype:
 int sps2UPrintf(sps2UFontStruct *pFont, const char *format, ...);

Parameters:
 pFont -- If null, the default font will be used, otherwise a font created by
x_font_to_sps2_u_font
 pFormat – A printf compatible format string. This can also include special tokens \377
and \376 to change the color and position of the text, see comments section.
 … -- Additional parameters as required by the format string.

Return Value:

The number of characters (counting \n’s) queued for printing. Note that this doesn’t count
special tokens like \377 and \376

See Also:
 sps2UPrintfRender
 sps2UPrintfSetPos
 sps2UPrintfSetZ
 sps2UPrintfSetWindow

Comments:
This queues a string for printing, actual rendering is done when sps2UPrintfRender is called. The
position of the string is placed according to the Z value specified by sps2UPrintfSetZ with X,Y
values relative to the previous call of sps2UPrintf unless they are overridden by the \376 token or
by a call to sps2UPrintfSetPos.

Two special tokens can be embedded into the string:
\377RRGGBB – The characters that follow (on this line only) will be displayed in the color
specified by the hex values RRGGBB. They must be six digits in total.
Example: sps2UPrintf(0, “\377FF0000I am in red.\n”);
\376(x, y) – The characters that follow will be displayed at coordinates (x,y) relative to the top of
the window defined by sps2UPrintfSetWindow.
Example: sps2UPrintf(0, “\376(50,50)I am at (50,50)\n”);

Defaults:
If not otherwise specified, the display window will be set to fill up the whole screen (when
sps2UScreenInit is called) with a default Z value of 128 and a default color of bright white.

If null is passed as the font parameter, a fixed font will be used.

Copyright © 2002, 2003 Terratron Technologies Inc. 71

 SPS2 Version 0.4.0

sps2UPrintfRender

Prototype:
 void sps2UPrintfRender();

Parameters:
 None

Return Value:

None

See Also:
 sps2UPrintf

Comments:
This outputs all characters that have been queued by calling sps2UPrintf and sets the position for
the next printf output to the top of the printf window
.

Copyright © 2002, 2003 Terratron Technologies Inc. 72

 SPS2 Version 0.4.0

sps2UPrintfSetWindow

Prototype:
 void sps2UPrintfSetWindow(int iX, int iY, int iWidth, int iHeight);

Parameters:
 iX-- The X coordinate of the beginning of the window.
 iY-- The Y coordinate of the beginning of the window.
 iWidth-- The width of the window
 iHeight-- The height of the window

Return Value:

None

See Also:
 sps2UPrintf
 sps2UPrintfSetPos
 sps2UPrintfSetZ
 sps2UPrintfGetWindow

Comments:
Sets the coordinates and size of the printf window. Note that no scrolling occurs within this
window – excess characters are just discarded.

Any changes to the prinf window will affect subsequent calls to sps2UPrintf, previously queued
but unrendered characters will be unaffected.

Copyright © 2002, 2003 Terratron Technologies Inc. 73

 SPS2 Version 0.4.0

sps2UPrintfSetPos

Prototype:
 void sps2UPrintfSetPos(int iX, int iY);

Parameters:
 iX-- The X coordinate for the next print output, relative to the top of the printf window

 iY-- The Y coordinate for the next print output, relative to the top of the printf window

Return Value:

None

See Also:
 sps2UPrintf
 sps2UPrintfGetPos
 sps2UPrintfSetZ
 sps2UPrintfGetWindow

Comments:
Sets the X, Y coordinates of the following printf (unless sps2UPrintfRender is called which will
reset to the top of the printf window).

Copyright © 2002, 2003 Terratron Technologies Inc. 74

 SPS2 Version 0.4.0

sps2UPrintfGetPos

Prototype:
 void sps2UPrintfGetPos(int *piX, int *piY);

Parameters:
 piX-- Pointer of an int to receive the X coordinate at which the next print will occur
 piY-- Pointer of an int to receive the Y coordinate at which the next print will occur

Return Value:

None

See Also:
 sps2UPrintf
 sps2UPrintfGetWindow
 sps2UPrintfSetPos

Comments:
Retrieves the coordinates of the following printf relative to the top of the printf window.

Copyright © 2002, 2003 Terratron Technologies Inc. 75

 SPS2 Version 0.4.0

sps2UPrintfSetZ

Prototype:
 void sps2UPrintfSetZ(int iZ);

Parameters:
 iZ – the Z value at which subsequent printf output will be drawn. Defaults to 128

Return Value:

None

See Also:
 sps2UPrintf
 sps2UPrintfGetPos
 sps2UPrintfGetZ
 sps2UPrintfSetWindow

Comments:
None

Copyright © 2002, 2003 Terratron Technologies Inc. 76

 SPS2 Version 0.4.0

sps2UPrintfGetZ

Prototype:
 int sps2UPrintfGetZ();

Parameters:
 None

Return Value:

The Z value at which printf output occurs. Defaults to 128.

See Also:
 sps2UPrintf
 sps2UPrintfGetZ

Comments:
Retrieves the Z coordinates at which print output is displayed.

Any changes to the Z value will affect subsequent calls to sps2UPrintf, previously queued but
unrendered characters will be unaffected.

Copyright © 2002, 2003 Terratron Technologies Inc. 77

 SPS2 Version 0.4.0

sps2UPrintfFontHeight

Prototype:
 int sps2UPrintfFontHeight(sps2UFontStruct *pFont);

Parameters:
 pFont – The font whose height is desired, or 0 for the default built-in font.

Return Value:

The height, in pixels, of the font.

See Also:
 sps2UPrintf
 sps2UPrintfStringWidth

Comments:
None

Copyright © 2002, 2003 Terratron Technologies Inc. 78

 SPS2 Version 0.4.0

sps2UPrintfStringWidth

Prototype:
 int sps2UPrintfStringWidth(sps2UFontStruct *pFont, const char
*pcString);

Parameters:
 pFont – The font whose width is desired, or 0 for the default built-in font.
 pcString – The string whose width to compute

Return Value:

The width, in pixels, of the string given the font.

See Also:
 sps2UPrintf
 sps2UPrintfFontHeight

Comments:
The current implementation of sps2UPrintfStringWidth will also count the width of special codes
such as \377 and \376 codes. Future versions of sps2UPrintfStringWidth will probably only return
the width of the string.

Users of the current version of sps2UPrintfStringWidth should not embed \377 or \376 codes into
strings passed to sps2UPrintfStringWidth.

Copyright © 2002, 2003 Terratron Technologies Inc. 79

 SPS2 Version 0.4.0

Index

double buffer, 8, 24, 54, 59, 61, 62, 63, 68 _sps2Close, 15, 17, 20, 21, 22, 41, 43, 44, 45,
46, 47, 48 DPUT_EE_GIF_FIFO, 16, 17, 25, 26

DPUT_EE_GIF_FIFO_OFF, 17 _sps2EnableCOP2Access, 27, 49
DPUT_EE_IPU_in_FIFO, 16 _sps2MapEERegisters, 17, 41, 45
DPUT_EE_IPU_in_FIFO_OFF, 17 _sps2MapGSRegisters, 20, 46
DPUT_EE_VIF0_FIFO, 16 _sps2MapScratchPad, 21, 48
DPUT_EE_VIF0_FIFO_OFF, 17 _sps2MapVUMemory, 22, 47
DPUT_EE_VIF1_FIFO, 16 _sps2Open, 15, 17, 20, 21, 22, 30, 33, 35, 36,

38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50 DPUT_EE_VIF1_FIFO_OFF, 17
DPUT_GS_BGCOLOR, 14, 19, 30, 46, 53 _sps2SetEIDIEnabled, 50 DPUT_GS_BGCOLOR_OFF, 20, 46 _sps2UNIClose, 44, 51 DPUT_GS_BUSDIR, 19 _sps2UNIEnableCOP2Access, 49, 51 DPUT_GS_BUSDIR_OFF, 20 _sps2UNIMapEERegisters, 45, 51 DPUT_GS_CSR, 19 _sps2UNIMapGSRegisters, 46, 51 DPUT_GS_CSR_OFF, 20 _sps2UNIMapScratchPad, 48, 51 DPUT_GS_DISPFB1, 19 _sps2UNIMapVUMemory, 47, 51 DPUT_GS_DISPFB1_OFF, 20 _sps2UNIOpen, 43, 51 DPUT_GS_DISPFB2, 19 _sps2UNISetEIDIEnabled, 50, 51 DPUT_GS_DISPFB2_OFF, 20 376, 71, 79 DPUT_GS_DISPLAY1, 19 377, 71, 79 DPUT_GS_DISPLAY1_OFF, 20 Acknowledgements, 6 DPUT_GS_DISPLAY2, 19 ADDR, 14 DPUT_GS_DISPLAY2_OFF, 20 Alt+PrintScreen, 28 DPUT_GS_EXTBUF, 19 ASP, 15 DPUT_GS_EXTBUF_OFF, 20 assembly language, 7, 23 DPUT_GS_EXTDATA, 19 base pointer, 17, 20, 21, 22, 41, 45, 46, 47, 48 DPUT_GS_EXTDATA_OFF, 20 bumpmap, 9, 11 DPUT_GS_EXTWRITE, 19 cache, 13, 15, 36, 38 DPUT_GS_EXTWRITE_OFF, 20 cached, 4, 13, 33, 36, 38 DPUT_GS_IMR, 19 cfc2, 27, 49 DPUT_GS_IMR_OFF, 20

common, 9 DPUT_GS_PMODE, 19
COP2, 7, 27, 30, 41, 49 DPUT_GS_PMODE_OFF, 20
ctc2, 49 DPUT_GS_SIGBLID, 19
DGET_EE_IPU_out_FIFO, 16 DPUT_GS_SIGBLID_OFF, 20
DGET_EE_IPU_out_FIFO_OFF, 17 DPUT_GS_SMODE1, 19
DGET_EE_VIF1_FIFO, 16 DPUT_GS_SMODE1_OFF, 20
DGET_EE_VIF1_FIFO_OFF, 17 DPUT_GS_SMODE2, 19
DI, 7, 30, 50 DPUT_GS_SMODE2_OFF, 20
DIR, 15 DPUT_GS_SRFSH, 19
Directories. See SPS2 Files and Directories DPUT_GS_SRFSH_OFF, 20
display buffer, 63 DPUT_GS_SYNCH1, 19
display resolution, 54, 64, 65 DPUT_GS_SYNCH1_OFF, 20
DMA, 4, 8, 13, 14, 15 DPUT_GS_SYNCH2, 19 controller, 4, 13, 14, 15, 33, 37 DPUT_GS_SYNCH2_OFF, 20 controllet, 15 DPUT_GS_SYNCV, 19 transfer, 4, 8, 13, 14, 15, 34, 37, 38, 39 DPUT_GS_SYNCV_OFF, 20
DMA tag, 7 draw buffer, 61, 62, 63
DMAC, 16, 17, See DMA:controller dyntexs, 9, 11 Dn_CHCR, 13, 14, 15 EE. See Emotion Engine Dn_CHCR_t, 13, 15 EE_D_CTRL, 17 Dn_MADR_t, 13 EE_D_CTRL_OFF, 18 Dn_SADR_t, 13

Copyright © 2002, 2003 Terratron Technologies Inc. 80

 SPS2 Version 0.4.0

EE_D3_QWC, 16 EE_D_ENABLER, 17
EE_D3_QWC_OFF, 18 EE_D_ENABLER_OFF, 18
EE_D4_CHCR, 16 EE_D_ENABLEW, 17
EE_D4_CHCR_OFF, 18 EE_D_ENABLEW_OFF, 18
EE_D4_MADR, 16 EE_D_PCR, 17
EE_D4_MADR_OFF, 18 EE_D_PCR_OFF, 18
EE_D4_QWC, 16 EE_D_RBOR, 17
EE_D4_QWC_OFF, 18 EE_D_RBOR_OFF, 18
EE_D4_TADR, 16 EE_D_RBSR, 17
EE_D4_TADR_OFF, 18 EE_D_RBSR_OFF, 18
EE_D5_CHCR, 16 EE_D_SQWC, 17
EE_D5_CHCR_OFF, 18 EE_D_SQWC_OFF, 18
EE_D5_MADR, 16 EE_D_STADR, 17
EE_D5_MADR_OFF, 18 EE_D_STADR_OFF, 18
EE_D5_QWC, 16 EE_D_STAT, 17
EE_D5_QWC_OFF, 18 EE_D_STAT_OFF, 18
EE_D6_CHCR, 16 EE_D0_ASR0, 16
EE_D6_CHCR_OFF, 18 EE_D0_ASR0_OFF, 17
EE_D6_MADR, 16 EE_D0_ASR1, 16
EE_D6_MADR_OFF, 18 EE_D0_ASR1_OFF, 17
EE_D6_QWC, 16 EE_D0_CHCR, 16
EE_D6_QWC_OFF, 18 EE_D0_CHCR_OFF, 17, 45
EE_D6_TADR, 16 EE_D0_MADR, 16
EE_D6_TADR_OFF, 18 EE_D0_MADR_OFF, 17
EE_D7_CHCR, 16 EE_D0_QWC, 16, 41
EE_D7_CHCR_OFF, 18 EE_D0_QWC_OFF, 17, 41
EE_D7_MADR, 16 EE_D0_TADR, 16
EE_D7_MADR_OFF, 18 EE_D0_TADR_OFF, 17
EE_D7_QWC, 16 EE_D1_ASR0, 16
EE_D7_QWC_OFF, 18 EE_D1_ASR0_OFF, 17
EE_D8_CHCR, 16 EE_D1_ASR1, 16
EE_D8_CHCR_OFF, 18 EE_D1_ASR1_OFF, 17
EE_D8_MADR, 16 EE_D1_CHCR, 16
EE_D8_MADR_OFF, 18 EE_D1_CHCR_OFF, 17
EE_D8_QWC, 17 EE_D1_MADR, 16
EE_D8_QWC_OFF, 18 EE_D1_MADR_OFF, 17
EE_D8_SADR, 17 EE_D1_QWC, 16
EE_D8_SADR_OFF, 18 EE_D1_QWC_OFF, 17
EE_D9_CHCR, 14, 17, 30 EE_D1_TADR, 16
EE_D9_CHCR_OFF, 18 EE_D1_TADR_OFF, 17
EE_D9_MADR, 14, 17 EE_D2_ASR0, 16
EE_D9_MADR_OFF, 18 EE_D2_ASR0_OFF, 17
EE_D9_QWC, 14, 17 EE_D2_ASR1, 16
EE_D9_QWC_OFF, 18 EE_D2_ASR1_OFF, 17
EE_D9_SADR, 14, 17 EE_D2_CHCR, 16
EE_D9_SADR_OFF, 18 EE_D2_CHCR_OFF, 17
EE_D9_TADR, 17 EE_D2_MADR, 16
EE_D9_TADR_OFF, 18 EE_D2_MADR_OFF, 17
EE_GIF_CNT, 16 EE_D2_QWC, 16
EE_GIF_CNT_OFF, 17 EE_D2_QWC_OFF, 17
EE_GIF_CTRL, 16 EE_D2_TADR, 16
EE_GIF_CTRL_OFF, 17 EE_D2_TADR_OFF, 17
EE_GIF_MODE, 16 EE_D3_CHCR, 16
EE_GIF_MODE_OFF, 17 EE_D3_CHCR_OFF, 18
EE_GIF_P3CNT, 16 EE_D3_MADR, 16
EE_GIF_P3CNT_OFF, 17 EE_D3_MADR_OFF, 18

Copyright © 2002, 2003 Terratron Technologies Inc. 81

 SPS2 Version 0.4.0

EE_VIF0_C1, 16 EE_GIF_P3TAG, 16
EE_VIF0_C1_OFF, 17 EE_GIF_P3TAG_OFF, 17
EE_VIF0_C2, 16 EE_GIF_STAT, 16
EE_VIF0_C2_OFF, 17 EE_GIF_STAT_OFF, 17
EE_VIF0_C3, 16 EE_GIF_TAG0, 16
EE_VIF0_C3_OFF, 17 EE_GIF_TAG0_OFF, 17
EE_VIF0_CODE, 16 EE_GIF_TAG1, 16
EE_VIF0_CODE_OFF, 17 EE_GIF_TAG1_OFF, 17
EE_VIF0_CYCLE, 16 EE_GIF_TAG2, 16
EE_VIF0_CYCLE_OFF, 17 EE_GIF_TAG2_OFF, 17
EE_VIF0_ERR, 16 EE_GIF_TAG3, 16
EE_VIF0_ERR_OFF, 17 EE_GIF_TAG3_OFF, 17
EE_VIF0_FBRST, 16 EE_I_MASK, 17
EE_VIF0_FBRST_OFF, 17 EE_I_MASK_OFF, 18
EE_VIF0_ITOP, 16 EE_I_STAT, 17
EE_VIF0_ITOP_OFF, 17 EE_I_STAT_OFF, 18
EE_VIF0_ITOPS, 16 EE_IPU_BP, 16
EE_VIF0_ITOPS_OFF, 17 EE_IPU_BP_OFF, 17
EE_VIF0_MARK, 16 EE_IPU_CMD, 16
EE_VIF0_MARK_OFF, 17 EE_IPU_CMD_OFF, 17
EE_VIF0_MASK, 16 EE_IPU_CTRL, 16
EE_VIF0_MASK_OFF, 17 EE_IPU_CTRL_OFF, 17
EE_VIF0_MODE, 16 EE_IPU_TOP, 16
EE_VIF0_MODE_OFF, 17 EE_IPU_TOP_OFF, 17
EE_VIF0_NUM, 16 EE_SB_SMFLG, 17
EE_VIF0_NUM_OFF, 17 EE_SB_SMFLG_OFF, 18
EE_VIF0_R0, 16 EE_T0_COMP, 16
EE_VIF0_R0_OFF, 17 EE_T0_COMP_OFF, 17
EE_VIF0_R1, 16 EE_T0_COUNT, 16
EE_VIF0_R1_OFF, 17 EE_T0_COUNT_OFF, 17
EE_VIF0_R2, 16 EE_T0_HOLD, 16
EE_VIF0_R2_OFF, 17 EE_T0_HOLD_OFF, 17
EE_VIF0_R3, 16 EE_T0_MODE, 16
EE_VIF0_R3_OFF, 17 EE_T0_MODE_OFF, 17
EE_VIF0_STAT, 16 EE_T1_COMP, 16
EE_VIF0_STAT_OFF, 17 EE_T1_COMP_OFF, 17
EE_VIF1_BASE, 16 EE_T1_COUNT, 16
EE_VIF1_BASE_OFF, 17 EE_T1_COUNT_OFF, 17
EE_VIF1_C0, 16 EE_T1_HOLD, 16
EE_VIF1_C0_OFF, 17 EE_T1_HOLD_OFF, 17
EE_VIF1_C1, 16 EE_T1_MODE, 16
EE_VIF1_C1_OFF, 17 EE_T1_MODE_OFF, 17
EE_VIF1_C2, 16 EE_T2_COMP, 16
EE_VIF1_C2_OFF, 17 EE_T2_COMP_OFF, 17
EE_VIF1_C3, 16 EE_T2_COUNT, 16
EE_VIF1_C3_OFF, 17 EE_T2_COUNT_OFF, 17
EE_VIF1_CODE, 16 EE_T2_MODE, 16
EE_VIF1_CODE_OFF, 17 EE_T2_MODE_OFF, 17
EE_VIF1_CYCLE, 16 EE_T3_COMP, 16
EE_VIF1_CYCLE_OFF, 17 EE_T3_COMP_OFF, 17
EE_VIF1_ERR, 16 EE_T3_COUNT, 16
EE_VIF1_ERR_OFF, 17 EE_T3_COUNT_OFF, 17
EE_VIF1_FBRST, 16 EE_T3_MODE, 16
EE_VIF1_FBRST_OFF, 17 EE_T3_MODE_OFF, 17
EE_VIF1_ITOP, 16 EE_VIF0_C0, 16
EE_VIF1_ITOP_OFF, 17 EE_VIF0_C0_OFF, 17

Copyright © 2002, 2003 Terratron Technologies Inc. 82

 SPS2 Version 0.4.0

Macro Mode, 7, 27, 49 EE_VIF1_ITOPS, 16
MIPS 3, 19 EE_VIF1_ITOPS_OFF, 17
MOD, 15 EE_VIF1_MARK, 16
NLOOP, 25 EE_VIF1_MARK_OFF, 17
NREG, 25 EE_VIF1_MASK, 16
NTSC, 54, 65, 67 EE_VIF1_MASK_OFF, 17
operation mode, 7, 40 EE_VIF1_MODE, 16
PAL, 54, 65, 67 EE_VIF1_MODE_OFF, 17
performance counters, 7, 40 EE_VIF1_NUM, 16
physical address, 14, 34, 37 EE_VIF1_NUM_OFF, 17
pixel format, 54, 68 EE_VIF1_OFST, 16
PRE, 25 EE_VIF1_OFST_OFF, 17
PRIM, 25 EE_VIF1_R0, 16
printf, 52, 71 EE_VIF1_R0_OFF, 17
printf queue, 52 EE_VIF1_R1, 16

EE_VIF1_R1_OFF, 17 ps2lframework, 9, 11
EE_VIF1_R2, 16 PSMCT32, 54, 68
EE_VIF1_R2_OFF, 17 pvEERegisters, 41
EE_VIF1_R3, 16 pvStart, 13, 33
EE_VIF1_R3_OFF, 17 registers. See Graphics Synthesizer, Emotion

Engine EE_VIF1_STAT, 16
EE_VIF1_STAT_OFF, 17 resolution, 54, See display resolution
EE_VIF1_TOP, 16 RGBAQ, 25, 26
EE_VIF1_TOP_OFF, 17 Scratch Pad, 4, 13, 21, 31, 32, 41, 44, 48
EE_VIF1_TOPS, 16 SCRATCH_PAD, 14, 21, 30, 32, 48
EE_VIF1_TOPS_OFF, 17 SCRATCH_PAD_OFF, 21, 48
EI, 7, 30, 50 SIF, 17, 18
Emotion Engine, 4, 9, 16, 17, 19, 30, 31, 32, 41,

44, 45
SIGCONT, 54
signal handler, 54

EOP, 25 signal handlers, 56
FIFO, 16, 17, 24 signals, 54
Files. See SPS2 Files and Directories SIGSTOP, 54
FINISH, 50 spr. See Scratch Pad
FLG, 25 SPR, 14
font, 71 SPS2 Core Function Set, 8, 9, 16, 19, 21, 22, 24,

27, 29, 30, 41, 51 font_avant.h, 52
geommath, 7, 9 SPS2 Extended Function Set, 8, 9, 17, 20, 21, 22,

27, 30, 41, 51 GIF, 16, 17, 24
GIF FIFO, 24 SPS2 Files and Directories, 9
GIF tag, 7, 24 SPS2 ioctl Command Set, 8
GIF_FLG_PACKED, 25 SPS2 Utility Library. See libsps2util
GIF_REG_RGBAQ, 25 SPS2_EE_REGISTERS_START, 30, 32
GIF_REG_XYZ2, 25 SPS2_GS_REGISTERS_START, 30, 32
Graphics Synthesizer, 4, 9, 13, 19, 20, 30, 31, 32,

41, 44, 46
sps2_load, 10
SPS2_MAP_BLOCK_128K, 33, 36

GS. See Graphics Synthesizer SPS2_MAP_BLOCK_16K, 33, 36 GS_BGCOLOR, 19, 20
SPS2_MAP_BLOCK_32K, 33, 36 GSVNC, 7, 28, 69, 70
SPS2_MAP_BLOCK_4K, 13, 33, 36 int_lock, 9, 11
SPS2_MAP_BLOCK_64K, 33, 36 INTC, 17, 18
SPS2_MAP_BLOCK_8K, 33, 36 interrupts, 7, 30, 50
SPS2_MAP_CACHED, 13, 33, 36 IPU, 16, 17
SPS2_MAP_UCAB, 7, 33 Kernel Module, 10, 11
SPS2_MAP_UNCACHED, 33, 36 libsps2dev, 24
sps2_mod, 10 libsps2util, 7, 8, 9, 11, 23, 28, 51
SPS2_SCRATCH_PAD_START, 30, 32 License, 5

Copyright © 2002, 2003 Terratron Technologies Inc. 83

 SPS2 Version 0.4.0

sps2UScreenGetDrawBuff2, 59, 60, 61, 62, 63 SPS2_SET_GIF_REG, 25
sps2UScreenGetDrawBuffCurrent, 59, 60, 61,

62, 63
sps2_unload, 10
SPS2_VU_MEMORY_START, 30, 32

sps2UScreenGetFirstFreeGSPage, 59, 60, 61, 62,
63

sps2Allocate, 13, 15, 30, 33, 35, 36, 37, 38
sps2EnableCOP2Access, 7

sps2UScreenGetHeight, 64, 65, 66, 67, 68 sps2FlushCache, 14, 15, 33, 34, 36, 38
sps2UScreenGetPixelFormat, 65, 66, 67, 68 sps2Free, 15, 30, 32, 33, 35, 36, 44
sps2UScreenGetVideoMode, 54, 65, 66, 67, 68 sps2GetPhysicalAddress, 14, 33, 34, 36, 37
sps2UScreenGetWidth, 64, 65, 66, 67, 68 sps2GIFPackedRegister_t, 25
sps2UScreenGetZDepth, 65, 66, 67, 68 sps2GIFTag_t, 25
sps2UScreenGetZPtr, 59, 60, 61, 62, 63 sps2Init, 13, 15, 16, 19, 21, 22, 24, 25, 27, 30,

31, 32, 33, 35, 36, 38, 39, 40, 41, 43, 45, 46,
47, 48, 49, 50, 53

sps2UScreenInit, 24, 25, 51, 53, 54, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71

sps2UScreenSetVNCUpdateRate, 28, 69,
70

sps2interface.h, 9
sps2lib.h, 9, 13, 15, 16, 17, 19, 20, 21, 22,

24, 27 sps2UScreenShutdown, 24, 25, 54, 56
sps2UScreenSwap, 7, 24, 25, 53, 57, 58 sps2Memory_t, 13, 32, 33, 35, 36, 37, 44
sps2util.c, 9 sps2registers.h, 9, 15, 16, 19, 30, 45, 46
sps2util.h, 9, 24, 51 sps2regstructs.h, 7, 9
sps2vumemory.h, 7, 9, 22, 47 sps2Release, 14, 15, 16, 19, 21, 22, 24, 25, 30,

31, 32, 41 sps2WaitForDMA, 14, 15, 39
STR, 14, 15, 39 sps2Remap, 35, 36, 37
supervisor mode, 7, 40 sps2scratchpad.h, 9, 21, 48
TAG_ID, 15 sps2SetOperationMode, 40
TAG_IRQ, 15 sps2tags.h, 9, 24
TAG_PCE, 15 sps2types.h, 9 TIE, 15 SPS2U_SCR_NTSC, 65, 67 Timer, 16, 17 SPS2U_SCR_PAL, 65, 67 tshower, 7, 9, 12 SPS2U_SCR_VESA, 65, 67 TTE, 15 sps2UFontStruct, 71, 78, 79 uncached, 4, 33, 36 sps2UNIAllocate, 33, 51 uncached accelerated, 7, 33 sps2UNIEnableCOP2Access, 7 user mode, 7, 40 sps2UNIFlushCache, 38, 51 Vector Unit, 4, 9, 22, 30, 31, 32, 41, 44, 47 sps2UNIFree, 35, 51 VESA, 54, 65, 67 sps2UNIGetPhysicalAddress, 37, 51 VI01, 27 sps2UNIInit, 30, 51 video mode, 54 sps2UNIRelease, 32, 51 VIF0, 16, 17 sps2UNIRemap, 36, 51 VIF1, 16, 17 sps2UNISetOperationMode, 40, 51 virtual address, 33, 37 sps2UNIWaitForDMA, 39, 51 virtual console, 54, 56 sps2UPrintf, 52, 53, 71, 72, 73, 74, 75, 76, 77,

78, 79 VNC, 28, 69
vspeed, 4, 9, 11 sps2UPrintfFontHeight, 52, 53, 78, 79 VSync, 24, 57 sps2UPrintfGetPos, 52, 74, 75, 76 VU. See Vector Unit sps2UPrintfGetWindow, 52, 53, 73, 74, 75 VU0, 27, 30, 41, 49 sps2UPrintfGetZ, 52, 76, 77 VU0 Macro Mode. See Macro Mode sps2UPrintfRender, 52, 53, 71, 72, 74 VU0_MEM, 7, 22, 47 sps2UPrintfSetPos, 52, 71, 73, 74, 75 VU0_MEM_OFF, 22, 47 sps2UPrintfSetWindow, 52, 71, 73, 76 VU0_MICRO_MEM, 22, 30, 47 sps2UPrintfSetZ, 52, 71, 73, 74, 76 VU0_MICRO_MEM_OFF, 22, 47 sps2UPrintfStringWidth, 52, 53, 78, 79 VU1, 49 sps2UScreen, 24, 51, 64, 65, 66, 68 VU1_MEM, 22, 47 sps2UScreenClear, 7, 24, 25, 53, 57, 58 VU1_MEM_OFF, 22, 47

sps2UScreenDisableVNC, 28, 69, 70 VU1_MICRO_MEM, 22, 47
sps2UScreenGetDrawBuff1, 59, 60, 61, 62, 63 VU1_MICRO_MEM_OFF, 22, 47

Copyright © 2002, 2003 Terratron Technologies Inc. 84

 SPS2 Version 0.4.0

x_font_to_sps2_u_font, 52, 71
xfd, 52
xlsfonts, 52

xwd, 28
XYZ2, 25, 26
Z buffer, 54, 59, 60, 66

Copyright © 2002, 2003 Terratron Technologies Inc. 85

	Table of Contents
	Introduction
	License Agreement
	Acknowledgements
	History of Changes
	Version 0.2.0
	Version 0.2.0a
	Version 0.3.0
	Version 0.3.0a
	Version 0.4.0

	Programming with SPS2
	SPS2 Files and Directories
	Installing and Loading SPS2
	Before You Build the Kernel Module
	Building the Kernel Module
	Loading the Kernel Module
	Unloading the Kernel Module
	Removing SPS2 From Your System
	Building the SPS2 Utility Library, libsps2util
	Building and Running the Sample Applications

	A Sample SPS2 Program
	SPS2 Programmer’s Guide
	Performing a DMA Transfer
	Accessing the Emotion Engine Registers
	Accessing the Graphics Synthesizer Registers
	Accessing the Scratch Pad Memory
	Accessing the Vector Unit Memories
	Using SPS2 from Assembly Language
	Drawing a Triangle using libsps2dev & sps2UScreen
	Accessing COP2 (VU0) & Macro Mode Instructions
	GSVNC Support

	SPS2 Core Function Set Reference
	sps2Init
	sps2Release
	sps2Allocate
	sps2Free
	sps2Remap
	sps2GetPhysicalAddress
	sps2FlushCache
	sps2WaitForDMA
	sps2SetOperationMode

	SPS2 Extended Function Set Reference
	_sps2Open
	_sps2Close
	_sps2MapEERegisters
	_sps2MapGSRegisters
	_sps2MapVUMemory
	_sps2MapScratchPad
	_sps2EnableCOP2Access
	_sps2SetEIDIEnabled

	SPS2 Utility Library, libsps2util
	Printf Functions
	sps2UScreenInit
	sps2UScreenShutdown
	sps2UScreenSwap
	sps2UScreenClear
	sps2UScreenGetFirstFreeGSPage
	sps2UScreenGetZPtr
	sps2UScreenGetDrawBuff1
	sps2UScreenGetDrawBuff2
	sps2UScreenGetDrawBuffCurrent
	sps2UScreenGetWidth
	sps2UScreenGetHeight
	sps2UScreenGetZDepth
	sps2UScreenGetVideoMode
	sps2UScreenGetPixelFormat
	sps2UScreenSetVNCUpdateRate
	sps2UScreenDisableVNC
	sps2UPrintf
	sps2UPrintfRender
	sps2UPrintfSetWindow
	sps2UPrintfSetPos
	sps2UPrintfGetPos
	sps2UPrintfSetZ
	sps2UPrintfGetZ
	sps2UPrintfFontHeight
	sps2UPrintfStringWidth

	Index

