
make
better

games

PlayStation 2 Clipping

Colin Hughes
Sony Computer Entertainment Europe

make
better

games

Standard graphics pipeline
• Vertices passed to T&L unit
• Transformed to clip space
• Hardware clips to viewport

• Programmer has no hassles.
– Not the case with PS2

make
better

games

Why no clipping
• Clipping in hardware is very

expensive.
– At least one FP divider and vector

multiplier required
– Up to 3 for full pipelined hardware

• relying on symmetry to clip +&- together

– This hardware lies idle for a great deal of
the time
• PS2 designed to maximize use of hardware

– Have software handle infrequent cases

make
better

games

PS2 Hardware

make
better

games

PS2 Overview
• MIPs CPU core

– 128 bit register set, multimedia
extensions

• Vector Units
– SIMD FP processors, operate on 4xSP
– Individual data & code memory

• Can run independently of core cpu

– VU0 closely tied to core
– VU1 closely tied to GS

make
better

games

PS2 Overview
• Graphics Synthesisor

– Rasteriser with 4MB embedded memory
– Optimised for high fill rate

– Very simple.
– No processing of vertex data

• Only 2D scissoring supported

• This means work for the programmer!!

make
better

games

Internal datapathsInternal datapaths

EE Core VU0 VU1

VIF0 VIF1
GIF

I$ D$ SP

Timers DMA
controller

Rambus
interface SIFIPU

make
better

games

VU1

VIF1
GIF

Rambus
interface

For a simple renderer all we
are interested in are the
following components

make
better

games

PS2 simple graphics pipeline
• Geometry sent to VU1 via DMA, along

with all state information.
• VU1 applies all transform, lighting,

and clipping.
– Back to old days..

• Polys sent directly from VU1 to GS
– Special internal link from VU1 memory to

GIF.

make
better

games

Simple transform
• Without worrying about clipping

transform is vector matrix operation
followed by homogeneous divide

Mul ACC,vf31,vf1w
Madd ACC,vf30,vf1z
Madd ACC,vf29,vf1y
Madd vf2,vf28,vf1x
div Q,vf0w,vf2w (vf0w = 1.0)
Mul vf2,vf2,Q

make
better

games

How does this compare?
• 6 instructions

– 5 multiples and one divide

• Compare to 4 for Vertex shader
– no divide as DX transforms to clip space

• VU ops contain upper and lower
instruction!!!
– Mul is upper
– Div (and integer / loadstore) are lower

make
better

games

Ground rules
• Only integer arithmetic and

accumulator have 1/1
throughput/latency

• FP ops have 1/4
• Load/Store is 1/4
• Divide is 7/7 - This is the killer

– Scalar divide unit only

make
better

games

Real VU code
NOP
NOP
NOP
MULAw ACC,vf31,vf0
MADDAz ACC,vf30,vf1
MADDAy ACC,vf29,vf1
MADDx vf2,vf28,vf1
NOP x 3
NOP
NOP x 6
MULQ vf2,vf2,Q
NOP x 3
FTOI4 vf2,vf2
NOP x 3
NOP

LQI vf1,(vi1++)
NOP
NOP
NOP
NOP
NOP
NOP
NOP x 3
DIV Q,vf0w,vf1w
NOP x 6
NOP
NOP x 3
NOP
NOP x 3
SQI vf2,(vi2++)

make
better

games

Real VU code
NOP
NOP
NOP
MULAw ACC,vf31,vf0
MADDAz ACC,vf30,vf1
MADDAy ACC,vf29,vf1
MADDx vf2,vf28,vf1
NOP x 3
NOP
NOP x 6
MULQ vf2,vf2,Q
NOP x 3
FTOI4 vf2,vf2
NOP x 3
NOP

LQI vf1,(vi1++)
NOP
NOP
NOP
NOP
NOP
NOP
NOP x 3
DIV Q,vf0w,vf1w
NOP x 6
NOP
NOP x 3
NOP
NOP x 3
SQI vf2,(vi2++)

make
better

games

Better code….
• Only 6 upper instructions and 3 lower

instructions are doing anything
• Theoretical performance is

determined by the DIV throughput

• Even with texture correction, 7 cycles
can be achieved.
– ST needs to be projected to STQ for GS
– 7 upper, 5 lower

make
better

games

Optimised transform
ftoi4.xyz vf12,vf8
mulq.xyz vf14,vf13,Q
mulq.xyz vf9,vf9,Q
mulaw.xyzw ACC,vf31,vf0
maddaz.xyzw ACC,vf30,vf8
madday.xyzw ACC,vf29,vf8
maddx.xyzw vf8,vf28,vf8
ftoi4.xyz vf12,vf9
mulq.xyz vf14,vf13,Q
mulq.xyz vf10,vf10,Q
mulaw.xyzw ACC,vf31,vf0
maddaz.xyzw ACC,vf30,vf9
madday.xyzw ACC,vf29,vf9
maddx.xyzw vf9,vf28,vf9
ftoi4.xyz vf12,vf10
mulq.xyz vf14,vf13,Q
mulq.xyz vf11,vf11,Q
mulaw.xyzw ACC,vf31,vf0
maddaz.xyzw ACC,vf30,vf10
madday.xyzw ACC,vf29,vf10
maddx.xyzw vf10,vf28,vf10
ftoi4.xyz vf12,vf11
mulq.xyz vf14,vf13,Q
mulq.xyz vf8,vf8,Q
mulaw.xyzw ACC,vf31,vf0
maddaz.xyzw ACC,vf30,vf11
madday.xyzw ACC,vf29,vf11
maddx.xyzw vf11,vf28,vf11

lq.xyz vf8,2+12(vi1)
lq.xy vf13,0+6(vi1)
iaddi vi1,vi1,3
div Q,vf0w,vf11w
sq.xyzw vf12,2-3(vi1)
ibeq vi1,vi2,prelit_exit
sq.xyz vf14,0(vi1)
lq.xyz vf9,2+12(vi1)
lq.xy vf13,0+6(vi1)
iaddi vi1,vi1,3
div Q,vf0w,vf8w
sq.xyzw vf12,2-3(vi1)
ibeq vi1,vi2,prelit_exit
sq.xyz vf14,0(vi1)
lq.xyz vf10,2+12(vi1)
lq.xy vf13,0+6(vi1)
iaddi vi1,vi1,3
div Q,vf0w,vf9w
sq.xyzw vf12,2-3(vi1)
ibeq vi1,vi2,prelit_exit
sq.xyz vf14,0(vi1)
lq.xyz vf11,2+12(vi1)
lq.xy vf13,0+6(vi1)
iaddi vi1,vi1,3
div Q,vf0w,vf10w
sq.xyzw vf12,2-3(vi1)
ibne vi1,vi2,prelit_loop
sq.xyz vf14,0(vi1)

make
better

games

Optimized transform
ftoi4.xyz vf12,vf8
mulq.xyz vf14,vf13,Q
mulq.xyz vf9,vf9,Q
mulaw.xyzw ACC,vf31,vf0
maddaz.xyzw ACC,vf30,vf8
madday.xyzw ACC,vf29,vf8
maddx.xyzw vf8,vf28,vf8
ftoi4.xyz vf12,vf9
mulq.xyz vf14,vf13,Q
mulq.xyz vf10,vf10,Q
mulaw.xyzw ACC,vf31,vf0
maddaz.xyzw ACC,vf30,vf9
madday.xyzw ACC,vf29,vf9
maddx.xyzw vf9,vf28,vf9
ftoi4.xyz vf12,vf10
mulq.xyz vf14,vf13,Q
mulq.xyz vf11,vf11,Q
mulaw.xyzw ACC,vf31,vf0
maddaz.xyzw ACC,vf30,vf10
madday.xyzw ACC,vf29,vf10
maddx.xyzw vf10,vf28,vf10
ftoi4.xyz vf12,vf11
mulq.xyz vf14,vf13,Q
mulq.xyz vf8,vf8,Q
mulaw.xyzw ACC,vf31,vf0
maddaz.xyzw ACC,vf30,vf11
madday.xyzw ACC,vf29,vf11
maddx.xyzw vf11,vf28,vf11

lq.xyz vf8,2+12(vi1)
lq.xy vf13,0+6(vi1)
iaddi vi1,vi1,3
div Q,vf0w,vf11w
sq.xyzw vf12,2-3(vi1)
ibeq vi1,vi2,prelit_exit
sq.xyz vf14,0(vi1)
lq.xyz vf9,2+12(vi1)
lq.xy vf13,0+6(vi1)
iaddi vi1,vi1,3
div Q,vf0w,vf8w
sq.xyzw vf12,2-3(vi1)
ibeq vi1,vi2,prelit_exit
sq.xyz vf14,0(vi1)
lq.xyz vf10,2+12(vi1)
lq.xy vf13,0+6(vi1)
iaddi vi1,vi1,3
div Q,vf0w,vf9w
sq.xyzw vf12,2-3(vi1)
ibeq vi1,vi2,prelit_exit
sq.xyz vf14,0(vi1)
lq.xyz vf11,2+12(vi1)
lq.xy vf13,0+6(vi1)
iaddi vi1,vi1,3
div Q,vf0w,vf10w
sq.xyzw vf12,2-3(vi1)
ibne vi1,vi2,prelit_loop
sq.xyz vf14,0(vi1)

make
better

games

Clipping (Simple FOV)
• View frustum normally set up as

-1 < X/Z < +1
-1 < Y/Z < +1
near < Z < far

• another form (as long as Z is valid)
-Z < X < +Z
-Z < Y < +Z
near < Z < far

make
better

games

VU support
• VU contains special CLIP instruction

– CLIP vfa.xyz,vfb.w
• -|w| < x < +|w|
• Same for y and z

– Easy in HW: Implement single |xyz|>|w| with
sign check

– |w| also allows cc to be correct for negative w

– Places 6 result bits in shift register
• Holds up to 4 check results (24 bits)

– Logical condition instructions can show
result for triangle or quad

make
better

games

Setting up clipping
• -|W| < X or Y < +|W| is simple
• near < W < far needs thinking about

n < w < f

1/f < 1/w < 1/n

0 < 1/w - 1/f < 1/n - 1/f

0 < (f-w)/wf < (f-n)/nf

make
better

games

Setting up clipping
0 < (f-w)/wf * nf/(f-n) < 1

0 < ((f-w)*n) / (w*(f-n)) < 1

0 < (2n *(f-w)) / (w*(f-n)) < 2

-1< (2n*(f-w)/(w*(f-n)) - (w*(f-n))/(w*(f-n)) <+1

-1 < (2fn - 2wn -wf + wn)/(w*(f-n)) < +1

-1 < (2fn - w(n+f))/(w*(f-n)) < +1

-|w| < (2fn -w(n+f)) / (f-n) < +|w|

make
better

games

Homogeneous space
• X and Y checks have valid regions

behind the camera (negative
eyespace Z)

• However the near / far plane check
only passes the region with positive w

• This means that the erroneous X/Y
regions are not valid Z regions..
– Z clipping must occur first!!!

make
better

games

Implementing clipping
• PS2 renders strips
• Each new vertex is a new triangle
• If any vertex fails the cliptest the

triangle needs clipping

• Note: Clipspace isn’t screen space
– Scale and bias need to be added

make
better

games

VU clipspace renderer
mulaw ACC,vf31,vf0
maddaz ACC,vf30,vf1
madday ACC,vf29,vf1
maddax vf3,vf28,vf1
clipw.xyz vf3,vf3
mula ACC,vf3,vf27
maddw.xy vf4,vf26,vf3
nop
nop
mulq.xyz vf4,vf4,Q
mulq.xyz vf2,vf2,Q
ftoi4.xyz vf4,vf4
nop
nop

Lqi vf1,(vi2++)
lqi vf2,(vi2++)
nop
nop
div Q,vf0w,vf3w
fcand vi1,0777777
fcget vi5
iaddiu vi1,vi1,0x7fff
mfir vf4.w,vi1
mfir vf2.w,vi5
nop
nop
sqi vf2,(vi3++)
sqi vf4,(vi3++)

make
better

games

Clipspace renderer
• This code is 10 upper and 10 lower

instructions
• All triangles are transformed, and any

that need clipping (via the FCAND)
are marked as non draw for the GS

• The calculated clipcodes are stored
for later use in an unused field

make
better

games

Guard band clipping
• If our triangles are small, we don’t

really need to clip them.
• Just discarding the triangles outside

the clip region is enough
• The GS 2D scissoring can clip

efficiently for small triangles.
• All we need to do is to increase the

size of the clip pyramid to allow a
‘guard band’

make
better

games

Full clipping
• Full clipping is very slow

– Sutherland Hodgman algorithm
– Check against each plane

• We reuse the clipcodes generated in
the previous code

• The OR of the vertex clip codes
determines the planes to check
against
– Remember to clip against Z first!!

make
better

games

Per plane checks
• Line segment clip test.
• 4 cases for output

– Both visible: Endpoint
– None visible:No output
– Leaving: Intersection
– Entering: Intersection and endpoint

• Intersection needs new clipcode generation

• Intersection calculation requires
multiply and divide operations

make
better

games

Intersection for w
• Vf1 is p1, vf2 is p2, vf3 is w plane

– sub vf4,vf2,vf1 p2-p1
– sub vf5,vf3,vf1 w-p1
– div Q,vf0w,vf4w 1/(p2w-p1w)
– mulw ACC,vf1,vf4w p1.(p2w-p1w)
– maddw vf6,vf4,vf5w (w-p1w)(p2-p1)
– waitq
– mulq vf6,vf6,Q Final result

make
better

games

Reuse of code
• Difficult to reuse code due to scalar

component used in plane intersection

• One solution:
– Rotate vector between checks
– xyzw to yzwx
– Clipping code always checks against W

• Or just three hardwired routines!!

make
better

games

Interpolation
• Only ST and XYZ are projected

properly
• RBGA interpolation needs to be

adjusted after projection to match GS

• This is only a problem for big triangles
– Not GS friendly anyway

make
better

games

Clipper output
• The output from the clipper for one

triangle is a n sided polygon
• This can be rendered as a fan or a

strip
– Fan: No need to reorder vertices
– Strip: Can be stitched in with unclipped

triangle strip to ensure no state change
problems

make
better

games

Optimizations
• Don’t clip degenerate triangles

– They wont draw anyway, so cull them

• At the expense of much more
unreadable code, the clipping
operation can be folded into the strip
rendering:

• See the code for details

• For small triangles not all 6 clipplanes
will intersect : Only 3 at most

make
better

games

Optimizations
• Not all objects have to go through the

clipper
• If the bounding volume for an object

or a section of mesh is not clipped
none of the triangles inside will be
clipped
– Use switchable VU code with two paths

make
better

games

Tearing
• Numerical inaccuracies can occur at

the boundary of valid and clipped
triangles
– Sometimes this is caused by a different

transform path in the renderer
• Direct object to screen matrix for unclipped
• Object to clip space / clip space to screen

otherwise

• Only solution is to unify the maths!!

make
better

games

Thank you

• Code and a more detailed document
will be available at:
– www.playstation2-linux.com

– Also at GameDeveloper site

• You can email me at:
– colin@users.playstation2-linux.com

