
Texture Swizzling

Version 1.0 - 2003-06-20 - PS2Linux edition

CHAPTER 1 - THE THEORY BEHIND TEXTURE SWIZZLING..2

INTRODUCTION ...2
WHAT IS TEXTURE SWIZZLING?..2
WHEN IS IT DONE? ..2
HOW IS IT DONE? ..3
TEXTURE SIZES ...3
SPEED TESTS ...4
SPEED COMPARISON TABLE ..5
CONCLUSION ..6
RELATED LINKS ..6

CHAPTER 2 - IN PRACTICE: EZSWIZZLE ..7
ABOUT THE SOFTWARE...7
HOW TO USE IT..7
CUSTOMISING THE FILE FORMAT..8
SUPPORT AND BUG REPORTS...8

Chapter 1 - The theory behind texture swizzling

Introduction

The GS can store textures in VRAM in many different formats as explained in
the GS User Manual (section 8). If an array of data is sent to the GIF
specifying PSMCT32 as the transfer format, it will be stored in VRAM
differently than if the same data was sent specifying PSMT4 as the transfer
format. This is completely transparent for the programmer, all that is required
is to have the raw 4bit data in main memory and specify PSMT4, or the raw
32bit data and specify PSMCT32.
The concern is, as always, speed. An array of data sent in PSMT4 format will
take longer to send than the same array in PSMCT32. The speed factor is
about 200% to 300% in favour of PSMCT32, so it would be interesting to be
able to use the full speed of the bus. The reason PSMCT32 is faster to
transfer the same amount of data than the other format is purely due to
internal GS bit conversion.

What is texture swizzling?

Texture swizzling is the "art" of swapping the pixels around in a texture so that
when it is sent in PSMCT32 format, it will be stored in exactly the same way it
would have been if it had been transferred using the original format. This
allows for greater transfer speeds, while the texture sizes don't change and
the geometry does not have to be modified in any way.

When is it done?

Texture swizzling is an offline process, so in the end it is completely free.
Typically, the swizzling code is part of the export toolchain, when the models
are exported from the modelling software and saved in a PS2 friendly format.
It also happens that the toolchain converts 32bit textures to 4 or 8bit using
your favourite quantitiser; and after that conversion it is a good time to
swizzle.

How is it done?

The principle is very easy, and doing it on the PS2 itself is trivial, even though
it isn't ideal. An easy way to understand the process is to do it on the PS2, but
for a better approach, see the next paragraph.
On the PS2, all you have to do is send the texture to the GS using the original
transfer format and then grab it back to main memory using PSMCT32;
however, the texture size has to be taken in consideration (see the "Texture
sizes" section). Sending the resulting texture to the GIF using PSMCT32 now
uses the full speed of the bus, and writes the data in the correct layout to be
used by the geometry using the original format settings.

A much better way is to write a number of functions in C that you can
integrate in your texture conversion tool easily to swizzle the pixels in the
same way as the GS does. Luckily, this has been done and distributed by
Victor Suba, so you don't have to do it yourself (see "Related links").
Victor implemented functions which read and write data to a simulated GS
memory (i.e. a statically allocated 4MB array). All the formats are supported
so that you can write to the "VRAM" in the original format and read it back in
PSMCT32 to swizzle the texture; or you can write in 32bit and read in the
original format to unswizzle it.

Texture sizes

One thing to take into account is that although the size (in bytes) of the data
doesn't change, the size (width and height) of the texture depends on the
format you are using. Take for example a 256x128 texture (Figure 1). If the
original format is 8bit, then swizzling it to 32bit will change the size to 128x64
(Figure 2). If the original format is 4bit, then swizzling it to 32bit will change
the size to 128x32 (Figure 3). The 3 textures have the same size in bytes.

Since the texture size changes, you have to either store or calculate the
original size when you want to fill the TEX0 register when you use the texture.

Figure 1: Original texture

Figure 2: 8 to 32bit

Figure 3: 4 to 32bit

If you are prebuilding your DMA chains, then the exporter has to set TEX0
according to the original size of the texture, not the size of the swizzled
version. If you are building your chains at run-time, it may be a little bit trickier;
you may have to add user-data to the texture file to specify the original format
and size of the texture (the TIM2 format allows you to do that, very handy).

The conversion table for texture sizes in Figure 4 shows the width and height
factors to use when converting to and from PSMCT32. For example,
converting from PSMCT16 to PSMCT32, divide the height by two and keep
the same width.

Speed tests

It is very easy to test the speed increase achieved by the swizzling technique;
a simple program to send a texture repeatedly can be used to measure the
raw gain of switching from PSMT4/8 to PSMCT32. The old sample TexTrans
(see "Related links") does exactly that, and the table in "Speed comparison
table" lists the respective gain for a number of texture sizes. N/A is specified
when the size does not allow the conversion to work because of the layout of
the blocks. It is a lot easier if the textures are sized to fit GS pages, as it helps
the texture manager find where to upload the texture and the swizzle works a
lot better.

As a general rule, it is usually better to try and pack a number of related
textures into one when possible. Of course, this can cause problems with the
CLUT (although you can have one CLUT for each part of the packed texture,
but that means that file format you use has to support multiple CLUTs). It may
also involve some changes in the CLAMP register, but nothing major.

It is also good to notice that the speed difference between PSMCT16 and
PSMCT32 is very small, so converting to one format or the other is just as
good. But generally conversions work best from 4bit to 16bit and from 8bit to
32bit, as shown in "Speed comparison table".

Width Height
PSMT4 2 4
PSMT8 2 2

PSMCT16 1 2

Figure 4: Factors table when converting to PSMCT32

Speed comparison table

Depth Normal transfer PSMCT16 PSMCT32 Max gain
16 x 32 4bit 1244 2380 N/A 191%
16 x 64 4bit 1223 2243 N/A 183%
16 x 128 4bit 1144 2039 N/A 178%
32 x 16 4bit 1224 2331 N/A 190%
32 x 32 4bit 1189 2223 2215 187%
32 x 64 4bit 1155 2039 N/A 177%
32 x 128 4bit 1020 1758 N/A 172%
64 x 16 4bit 1224 2262 N/A 185%
64 x 32 4bit 1164 2061 N/A 177%
64 x 64 4bit 1012 1755 1747 173%
64 x 128 4bit 782 1356 N/A 173%

128 x 16 4bit 1144 2013 N/A 176%
128 x 32 4bit 832 1736 N/A 209%
128 x 64 4bit 519 1242 N/A 239%
128 x 128 4bit 299 774 943 315%
256 x 16 4bit 839 1777 N/A 212%
256 x 32 4bit 520 1252 N/A 241%
256 x 64 4bit 297 759 N/A 256%
256 x 128 4bit 160 434 N/A 271%
256 x 256 4bit 83 333 332 401%

16 x 8 8bit 1137 N/A 2404 211%
16 x 16 8bit 1142 N/A 2331 204%
16 x 32 8bit 1113 N/A 2260 203%
16 x 64 8bit 1054 N/A 2077 197%
32 x 8 8bit 1129 N/A 2331 206%
32 x 16 8bit 1116 2244 2220 201%
32 x 32 8bit 1060 N/A 2071 195%
32 x 64 8bit 970 N/A 1754 181%
64 x 8 8bit 1122 N/A 2175 194%
64 x 16 8bit 1060 N/A 2073 196%
64 x 32 8bit 965 1754 1781 185%
64 x 64 8bit 842 N/A 1360 162%

128 x 8 8bit 1065 N/A 2040 192%
128 x 16 8bit 965 N/A 1767 183%
128 x 32 8bit 842 N/A 1365 162%
128 x 64 8bit 660 778 947 143%
128 x 128 8bit 461 N/A 584 127%
128 x 256 8bit 288 N/A 332 115%
256 x 8 8bit 974 N/A 1746 179%
256 x 16 8bit 834 N/A 1365 164%
256 x 32 8bit 648 N/A 941 145%
256 x 64 8bit 430 434 584 136%
256 x 128 8bit 256 N/A 332 130%
256 x 256 8bit 140 N/A 179 128%

Size

The values correspond to the number of textures that can be sent in 200
scanslines; the more the better, obviously.

Conclusion

While swizzling is a simple and straightforward concept, the actual process is
a bit fiddly. Not all texture sizes are "swizzleable", and different sizes give very
different results.
It may be useful to add some user information in the texture file to say what
the original size and format of the texture are (used for TEX0) to make it easy
to enable swizzling per texture. That way, you upload the texture using the
actual texture size and format, and set TEX0 to the original values, and you
don't have to worry whether the texture is actually swizzled or which format it
is swizzled to.
If a texture is causing problems when swizzled, simply don't swizzle it. The
gain on a single texture is negligible, and it is not worth losing hair over a few
textures. However, try rotating it and update the STs in the geometry, as this
may fix the problem.
Once the exporters are tweaked and the renderer is set up, the process is
completely transparent and done once and for all.

For swizzling code samples, check out ezSwizzle which features a Windows
GUI and batch processing.

Related links

Victor Suba's code:
http://www.playstation2-linux.com/projects/ezSwizzle/

ezSwizzle:
http://www.playstation2-linux.com/projects/ezSwizzle/

Contact: Lionel Lemarié
llemarie@playstation2-linux.com

 Chapter 2 - In practice: ezSwizzle

About the software

This Windows MFC application is a sample of tool used to convert textures
from a variety of formats to a customised TIM2 format. Because the TIM2
format is flexible, the images can still be read by conventional editors; but
ezSwizzle can also read the extra information to unswizzle the texture if
necessary. Also, with the extra information, the code running on the PS2 can
easily use the texture with very little extra overhead.
The batch feature allows you to select a number of textures, convert them to
8bit if so you desire, swizzle them, and save them with a suffix.

How to use it

You can drag n' drop a selection of files or folders into the file list, or click on
"Add files..." to use the Open File dialog.
When you select a file in the list, the preview displays the picture and some
information on the image is provided. You then have the choice to convert the
image to 8bit or 32bit, flip it horizontally, and resize it to your liking.
The final part lets you decide whether you want to swizzle, unswizzle or leave
the image as is. Then you can either save the current file, or batch convert the
whole list.

Customising the file format

With the provided sources, it is easy to customise the output file format and
use the one expected by your engine instead. All you have to do is create a
SaveMyFormat(CString strFilename) function in the CEzSwizzleDlg
class (in the .c and the .h) and call it instead of SaveTIM2(strFilename) in
the OnButtonConvertfile() function.

All the image information is held in the following class members:

iImageWidth Width of the converted image in pixels.
iImageHeight Height of the converted image in pixels.
iImageDepth Depth of the converted image in bits per pixel.
iImageOriginalWidth Width of the original image in pixels.
iImageOriginalHeight Height of the original image in pixels.
iImageOriginalDepth Depth of the original image in bits per pixel.
pImageData Converted image data buffer.
iDataSize Size of the data buffer in bytes.
pOriginalPalette Original palette buffer.
iPalBytesPerPixel Depth of the palette in bytes per pixel.

When saving the file, keep the following points in mind:
- You can test if the image has been swizzled or not by comparing
iImageWidth and iImageOriginalWidth; the former will be smaller than the
latter if the image is swizzled.
- If the image is swizzled, don't forget to save the CLUT, even though the
image is now in 16/32bit !
- Set the TEX0 register using iImageOriginalWidth, IImageOriginalHeight, and
iImageOriginalDepth.
- Set up the texture transfer using iImageWidth, iImageHeight, iImageDepth.

Support and bug reports

If you have any problems, suggestions or comments, please email us at the
usual address: llemarie@playstation2-linux.com.

If you want to complain/comment about the code, or if you have feature
requests, please post them on the project on the web site:
http://playstation2-linux.com/bug/ezswizzle

