libHdd Reference Manual

hdd utility library by:
Nicholas Van Veen

hdd driversby:
Nicholas Van Veen,
Florin Sasu,
Marcus R. Brown,
Vector

fileXiofilelO library by:
adresd

Documentation by:
Nicholas Van Veen

Development of parts of libhdd (specifically, the utiliy library, APA driver and PFS driver)
was sponsored by DM S T echnologies, the makers of the excellent DM S3 PS2 modchip -
http://www.dms3.com

Table of Contents

I ntroduction to libHdd

I ntroduction to APA

I ntroduction to PFS

PFSfeatures

PFSdriver performance

Overview of the proposed homebrew hdd usage guidelines
libHdd utility library

© 00 N o O M~ W

Structures

Functions

The APA driver

Structures

Functions

Devctl commands

| octl2 commands

The PFSdriver

Structures

Functions

Devctl commands

| octl2 commands

10
11
14
15
16
20
22
24
25
26
33

INTRODUCTION TO LIBHDD

Introduction to libHdd

libHdd is a st of drivers and source code which provides access to a hard disk drive (hdd)
connected to your PS2. The library dlows you to manage partitions and provides access to
filesystems on the hdd. Partitions are organized on the hdd usng what is known as the “digned
patition dlocation” sysem, dso known as “APA”. The filesytem type supported by libHdd is
cdled the “Playstaion Filesygem”, dso known as “PFS’. Both PFS and APA are described in
more detail later on in this document.

libHdd is made up of several distinct parts:

e APA driver, manages APA partitions on the hdd.

e PFSdriver, manages access to PFS filesystems stored within APA partitions.

o Utility library, sits on top of the APA and PFS drivers and simplifies access to the hdd.
Something important to note is that Playstation 2 hdd-enabled games use the same APA partition
sysem which libHdd supports, so both hdd-enabled games and homebrew software can access

the hdd without conflicts. However, libHdd cannot be used to access patitiond filesystems
created by these games.

INTRODUCTION TO APA

Introduction to APA

The hard disk drive (hdd) on the PlaySation 2 is organized usng a cusom partitioning sysem
known as digned partition dlocation (APA). In this system there are two types of partitions —
main partitions and sub partitions. Each man partition can have up to 64 sub partitions linked to
it, as shown by the illustration below:

Main

Sub Sub Sub Sub Sub

Qb partitions are very smilar to man partitions, the man difference is in the way sub partitions
are tregted by the Playstation Filesystem (see introduction to PFS). The main partition and dl sub
patitions atached to it are tregted as a Snge “block deviceg’ by the filesygem. Due to thisit is
possible to create filesystems of various sizes using different combinations of sub partition sizes. It
is ds0 possble to expand the Sze of afilesysem dfter the initid formatting by adding additional
sub partitions to the main partition.

Partition 9zes are redricted to a power of 2 (from 128mb to 32GB). However, the APA driver
imposes a limitation regarding the Sze of a nemy created patition. The Sze is redtricted to
approximately 1/32 the size of the entire hdd, so if for example if the hdd size is 40GB (the size of
the official Sony hdd), then the maximum partition size will be 1GB.

Partitions are arranged on the hdd using the aigned partition allocation method. When a partition
is placed on the hdd, it will be placed sarting on a sector which is digned with the partition sze.
The sector which is digned with the partition sze becomes the heeder for the partition. The
header is 1kb large.

Man partitions have an “extended atributes ared’ placed after the partition header. This aeais
approximately 4mb large. Y ou are able to read and write to this area; however it is not managed by
a filesygtem. Read and write access is provided by sandard read/ writef Iseek cdls (see hdd.irx
reference), however you are redricted to reading/ writing in units of 512 bytes. This area is
generdly only used to goreicon files to be displayed by a hdd-enabled PS2 browser replacement.
There are currently no details on exactly how the atributes areais used to gore icon files etc, 0
any information regarding this would be appreciated.

INTRODUCTION TO APA

The layout of partitions is described below:

Offset
Okb
1kb
4kb

4mb
Table: Layout for main partition

Offset
Okb
1kb

4kb
Table: Layout for sub partition

Data
Partition header
Reserved area
Extended attribute area

Start of filesystem

Data
Partition header
Reserved area

Start of filesystem

INTRODUCTION TO PFS

Introduction to PFS

Playstation 2 software also uses a custom filesystem which sits on top of the APA partition system.
This filesystem is known as the “Playstation Filesysgem” or “PFS’ for short. PFS is a 64-bit
journaling filesystem, with similar characteristics to * nix filesystems such as EXT2. The maximum
possible sze of the filesysem is technicdly 2TB, though it’s unlikdy anybody will ever cregte a
PFSfilesysem of that sze The maximum file Sze is dso 2TB. It is dso important to note that
while PFSisa64-bit filesystem, the unit of a single read/write/seek operation is 32-hits.

PFS features

L ogical volumes: PFS allows multiple partitions to be treated as a single filesystem. That
is, where there are sub-partitions attached to a main partition, the combination of the main
partition and all its sub-partitions are treated as a single filesystem, or logical volume. Even
after building afilesystem, it is possible to increese its Size as needed by adding additiond
sub-patitions. The next time the filesysem is mounted, the driver will recognize the
additiond partitions and adjugt the filesysem accordingly (i.e forma the new partitions
and adjust the free space etc).

Directories: PFS uses a hierarchical directory structure similar to conventional filesystems
such as EXT2. The size of adirectory is of avariable length and the number of fileswhich
can be placed in each directory is unlimited. However, currently there is no directory cache
implemented in the PFS driver so the more files in eech directory, the dower the
performance will be when accessing those files. If possible, keep the number of files in
each directory to aminimum.

Filenames: You ae free to use any character in filenames except for /. The maximum
length of the name of a sngle file is 255 characters, and the maximum length of a path
nameis 1024 characters.

File modes: PFS supports file modes such as execution/ writef reed rights to individud
filesand directories. However, currently in Playstation 2 software there is no such concept
asthe“user”, so currently in the PFS driver the user id and group id for each fileis fixed.

Journalling: PFS performs a process cdled “journdling’ that enables the recovery of a
filesystem which has become corrupted in the event of a sygem crash or power falure
When an operation such as creating/modifying afile is performed, in addition to updating
the actual file contentsitsis necessary to update the metadata (i.e. inodes, directory entries)
on the hdd. If there is a falure while writing the metadata back to the hdd, then the
metadata will become inconsgent and it may not be possble to read back the fil€s
contents properly. In mogt conventiond filesygems you would be required to run the
filesystem check utility in order to attempt to repair the corrupt filesystem, and even then a

INTRODUCTION TO PFS

full recovery may not be possble In PFS metadaais firg written to the journd areaand
then written to its actud destination on the hdd &ter it has been written to the journd
area. In the event of afailure, corrupted metadata can be recovered from the journd area.
In PFS journdling is performed only for metadata — file deta is written to the hdd
immediately.

PFS driver performance

Memory efficiency: The PFS driver is desgned to reduce memory usage on |OP as
much as possible, while il achieving impressive performance. It is dso designed o that
the memory usage is completdy customizeble. When loading the module you can specify
the number of buffers caches to use The more buffers you use, the gregter the
performance will be, but thiswill also result in more memory consumption. Currently, the
size of asingle buffer isfixed at 1052 bytes.

File location: When files are placed on the hdd, the driver triesto dlocae a continuous
area aslarge as possible to store the file contents so that file contents can be read back at a
maximum speed. Due to this, write goeed is rdativey dower than reading but only when
the aeais being dlocated. It is possble to improve write performance by dlocating space
for afilein advance, if you have an idea of how large the file will be.

Setting the “Zone” size: Like mog filesygems, in PFSfiles are congtructed from smadl
fragments. In PFS these fragments are cdled “Zones’. A zone corresponds to a block in
EXT2. When formatting the filesystem you are required to select a zone size (which must
be a power of 2, in the range of 2kb to 128kb). Y ou can increase performance by selecting
azone Sze which suits the datayou will be storing, i.e. if you will be storing anumber of
amdler files then you will be better off usng a amdl zone sze, while if goring a smdl
number of larger files you will be better off using alarge zone size.

OVERVIEW OF THE PROPOSED HOMEBREW HDD USAGE GUIDELINES

Overview of the proposed
homebrew hdd usage
guidelines

| believe that in order to mantan consgency in homebrew gpplications which utilize the hdd, a
set of usage guidelines needsto be put in place. | have drafted a simple set of guidelines which are
explained below.

Logical filesystems: PFS supports filesygems logicd volumes made up of multiple
partitions. Applications should treat a main partition and any sub partitions attached to the
main as asingle filesystem.

Filesystem groups:. Filesysems on the hdd can be broken into three diginct groups:
Application, Sygem and Common. Application filesystems are those crested by hdd-
encbled Playstation 2 titles, or homebrew gpplications which require their own dedicated
filesystem. Sygtem filesysems are those crested and used by sysem software such as the
Playstation 2 browser. Common filesystems are those created by the user (with atool such
asthe DMShdd format tool). They can be cregted by the user asthey wish, for whatever
purpose they wish. Applications which dlow loading files from the hdd, for ingance an
emulator which loads rom files or a media player which loads movie/audio files, would let
the user browse through any of the common filesystems on the hdd. An example of thisis
PGEN which dlows you to browse through any common filesygems on the hdd when
selecting agameto play.

Partition naming: Sydem partitions are prefixed with “__ " (double underscore), i.e
“__boot”. Common partitions are prefixed with “+”, i.e. “+Media’. Application partitions
have no prefix.

Boot filesystem: The forma function from libHdd (sse beow) crestes a sysem
filesystem named “__boot”. Thisfilesystem is reserved for storing homebrew applications
which may be executed by aloader application. The details for the layout of this filesystem
have not been findized a present. | would like to get feedback from other developers as
to how this partition should be usad, then a gandard can be rdlessed which can be
followed by anybody who wishes to creste a loader goplication. Then any loader
applications can share the boot partition without problems.

The above guiddines are currently enforced by the DMS hdd format tool. They are ill a
dreft, =0 | would like to hear back from other devdopears with any feedback.

LIBHDD UTILITY LIBRARY

libHdd utility library

ThelibHdd utility library provides functions for listing/removing/creating filesystems on the hdd,
formatting the hdd, checking for the presence of ahdd and handling the power-off procedure. It
adheres to the draft homebrew hdd usage guidelines specified above.

Much of the library relies on the p2drv project, and in particular the fileXio module of ps2drv.
fileXio isareplacement file IO manager written by adresd, which is used by the utility library and is
used to access the APA and PFSdrivers In order to build and use libHdd you must have a copy
of ps2drv.

Something to note is that when the hdd drivers are resdent, the PS2's reset button no longer
functions as normal. The resident software must detect when the reset button is pressed, make any
preparations required before the system shuts down (such as closing al files on the hdd to prevent
corruption) and then findly power the system down through software libHdd is bundled with a
default power-off handler which will dose dl PFS files and power off the PS2, when the resst
button has been pressed. This is described in more deal in the following section.

LIBHDD UTILITY LIBRARY

Structures

typedef struct {
char name[32];char filename[40];
u32 size;
int formatted;
u32 freeSpace;
int fileSystemGroup;
} t_hddFilesystem;

The t_hddFilesystem structureis used to hold information for afilesystem.

‘name’ The name of the filesystem (with any prefix characters stripped). l.e. a
filesystem with the filename “hdd0:+Media’ would have the name
“Media’.

‘filename’ The actual filename for the filesystem which can be used to open the
filesystem’s main partition using the file 10 library.

‘size Total size of the filesystem, in mega-bytes

‘formatted’ TRUE if filesystem is formatted, otherwise FALSE

‘freeSpace’ The filesystem’s free space, in mega-bytes

‘fileSystemGroup’ The filesystem group (one of: FS_GROUP_SY STEM,
FS GROUP_COMMON or FS_ GROUP_APPLICATION)

typedef struct {

int hddSize;

int hddFree;

int hddMaxPartitionSize;
} t_hddinfo;

Thet_hddinfo structure is used to hold information about the current state of the hdd.

‘hddSize Total capacity of the hdd in mega-bytes

‘hddFree Amount of free space (space not currently used by partitions)
on the hdd

‘hddM axPartitionSize The maximum size allowed for asingle partition, in

mega-bytes

10

LIBHDD UTILITY LIBRARY

Functions

int hddCheckPresent();
Checks for the presence of a supported hdd.

Returns O if a supported hdd is found, otherwise -1.

int hddCheckFormatted();
Checksif the connected hdd is properly formatted.

Returns 0 if the connected hdd is properly formatted, otherwise -1.

int hddFormat();
Formats the connected hdd with APA and creates the “boot” system filesystem.

Returns 0 on success, -1 times errno if an error occurred.

void hddGetInfo(t_hddInfo *info);
‘info’ Pointer to at_hddinfo structure where the current state of the HDD will be
stored.

Fills the structure pointed to by info with the current state of the hdd (i.e, information
regarding the total hdd capacity, free space etc).

int hddGetFilesystemList(t_hddFilesystem hddFs[], int maxEntries);
‘hddFs Pointer to an array of t_hddFilesystem structures where list will be stored.
‘maxEntries The max number of list entries which will be written.

Retrieves alist of filesystems present on the hdd. Thelist is stored in the buffer pointed to by
hddFs. At most, maxEntries structures arefilled.

Returns the number of t_hddFilesystem structures filled on success, -1 times errno if an error
occurred.

11

LIBHDD UTILITY LIBRARY

int hddMakeFilesystem(int fsSizeMB, char *name, int type);

‘fsSizeMB’ Size of the new filesystem in mega-bytes, must be a multiple of 128mb.

‘name’ Name of the new filesystem

‘type Filesystem type. One of: FS GROUP_SY STEM, FS GROUP_COMMON
or FS GROUP_APPLICATION

Creates a new filesystem on the hdd. The function will first create a main partition as large as
possible, then attempt to create sub-partitions until the sum of main and sub partition sizes
meets the desired filesystem size.

Currently, a system filesystem may only be created if named “boot”. Any attempt to create a
system filesystem with a different name will fail.

Returns the size of the created filesystem in mega-bytes, or -1 times errno if an error
occurred. Y ou should check that the returned value is equa to the value you pass for
fsSizeMB, asit is possible that the size of the filesystem which was created is not as big as
you requested.

int hddRemoveFilesystem(t_hddFilesystem *fs);

‘fs Pointer to at_hddFilesystem structure which holds information
corresponding to the filesystem which isto be del eted.

Removes afilesystem from the hdd.

Returns 0 on success, -1 times errno if an error occurred.

int hddExpandFilesystem(t_hddFilesystem *fs, int extraMB);

‘fs Pointer to at_hddFilesystem structure which holds information
corresponding to the filesystem to be resized.

‘extraM B’ The amount of mega-bytes to increase the filesystem’ s size by. Must be a
multiple of 128mb.

Expands afilesystem by adding additional sub-partitions.
Returns the amount the filesystem was expanded by, or -1 times errno if an error occurred.

Aswith the hddM akeFilesystem function, you should check that the return value matches the
value passed for extraM B.

12

LIBHDD UTILITY LIBRARY

void hddPreparePoweroff();

Ingdls the default power-off handler. The default poweroff hander will dose dl PFS files then
power off the PS2 when the reset button is pressed. For this operation it is required that
poweroff.irx (induded with libHdd) is loaded on IOP. This can actudly be loaded before or after
the call is made to this function.

void hddSetUserPoweroffCallback(void (*user_callback)(void *arg), void
*arg);
‘user_callback’ Pointer to the callback function

‘arg’ Pointer to a buffer which will be passed as an argument to the
callback function.

Sets auser callback function to be executed during power-off handling (ie: when the PS2
reset button has been pressed). ‘user_callback’ isapointer to the callback function, and ‘arg’
isa pointer which will be passed to the callback function when it is called.

void hddPowerOff();

Activates the power-off handler, which first closes all PFS files then powers down the
system.

13

THE APA DRIVER

The APA driver

The APA driver (hdd.irx) manages access to the hdd at the partition level. It also provides
support for a number of miscellaneous tasks such as flushing the hdd’ s cache, shutting down
DEV9 etc. All access to the APA driver is done through the “fileXio” file |O manager.

The APA driver requires that ps2dev9.iirx and p2atad.irx are loaded firg. On loading the APA
driver, you can pass arguments to control the performance and memory consumption of the
driver. The possible arguments are as follows:

-0 <#> - Maximum number of partitions which may be opened
simultaneoudly. In the current implementation of the driver,
each open consumes 564 bytes of memory.

-n <#> - Number of buffersto use. The speed of operation may be
improved by increasing the number of buffers. By default 3
buffers are used, and each consumes 1048 bytes of memory.

Throughout the remained of this chapter, usage of the APA driver viafileXio is documented.

14

THE APA DRIVER

Structures

typedef struct {
unsigned int mode;
unsignedint attr;
unsignedint size;
unsigned char ctimel8];
unsigned char atime[8];
unsigned char mtime[8];
unsignedint hisize;
unsigned int private 0;
unsigned int private 1;
unsigned int private 2,
unsigned int private 3;
unsigned int private 4;
unsignedint private 5;

} iox_stat_t;

‘mode’ Filesystem type of the partition. Possible valuesinclude FS_TYPE_PFS,
FS TYPE_EXT2or FS_TYPE_EXT2 SWAP.

‘attr’ Specifiesif the partition isamain or sub partition. Possible values include
ATTR_SUB_PARTITION and ATTR_MAIN_PARTITION

‘size Number of sectorsin the partition.

‘ctime’ Creation time of the partition.

ctime[1] = seconds

ctime[2] = minutes

ctime[3] = hours

ctime[4] = day

ctime[5] = month

ctime[6 & 7] = year (4 digits)

‘private 0 For amain partition, this field holds the number of sub partitions. For a sub
partition, holds the sub partition number.

typedef struct {
iox_stat_t stat;
char name[256];

unsigned int unknown;
} iox_dirent_t;

‘stat’ Partition status, as described above.
‘name Partition name

15

THE APA DRIVER

Functions

int fileXioFormat(const char *dev, const char *blockdev, const char *args, int
arglen);

‘dev’ Device name (currently fixed at “hdd0:")
‘blockdev’ Must be NULL

‘args Must be NULL

‘arglen’ Must be 0

Formats the hdd with the APA partition format. The required system partitions are created,
however they are not formatted. The hdd will not be recognized by hdd enabled PS2 games
until these system partitions have been formatted.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioOpen(const char *name, int flags, int modes);
‘name’ Partition identifier string
‘flags One or more (vialogical OR) of the following:

O_RDONLY - Open as read only

O_RDWR — Open as read/write

O_CREAT — Create anew partition
‘modes Must be 0

Creates anew main partition or opens an existing main partition. The partition identifier
string consists of the device, the partition name, and the partition size if anew partition is
being created.

Examples for the partition identifier string (source):

1. “hddO:Media’ to open the existing partition called “Media’
2. “hdd0:Games,128M” to create a partition called “ Games’, which is 128MB large.

The possible choices for the size part of the partition identifier are:
128M, 256M, 512M, 1G, 2G, 4G, 8G, 16G, 32G

Returns the file descriptor for the partition (> 0) on success, -1 times errno if an error
occurred.

16

THE APA DRIVER

int fileXioClose(int fd);
‘fd’ The file descriptor returned by fileXioOpen

Closes an opened partition and frees the file descriptor.

Returns 0 on success, -1 times errno on failure.

int fileXioDopen(const char *name);
‘name’ Device name (currently fixed at “hdd0:”)

Opens a partition table for reading. Once a partition table is open, you may retrieve alist of
all partitions on the device through callsto fileXioDread.

Returns afile descriptor on success (> 0), -1 times errno if an error occurred.

int fileXioDread(int fd, iox_dirent_t *dirent);

‘fd’ File descriptor returned by fileXioDopen
‘dirent’ Pointer to aiox_dirent_t structure which will be filled according to the next
entry in partition entry list.

In order to retrieve alist of all partitions on the device opened by fileXioDopen, you can
iterate over this function. Each time the function is called, the next entry in the partition list
isread and the structed at dirent isfilled.

Returns the length of the partition name (length of string in name member of iox_dirent_t),
or 0 if the end of the partition list isreached (ie: when thisreturns 0, its time to stop the
iteration). If an error occurred, returns -1 times errno.

int fileXioDclose(int fd);
‘fd’ File descriptor returned by fileXioDopen

Closes a partition table opened by fileXioDopen. Returns 0 on success, -1 times errno if an
error occurred.

17

THE APA DRIVER

int fileXioGetStat(const char *name, iox_stat_t *stat);

‘name’ Partition identifier string (as described above)
‘stat’ Pointer to buffer where partition information will be stored

Fillsaiox_stat_t structure with information corresponding to the partition specified by the
partition identifier string.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioRemove(const char* name);

‘name’ Partition identifier string (as described above)

Removes the specified main partition. All attached sub partitions are also deleted.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioRead(int fd, unsigned char *buf, int size);

‘fd’ File descriptor for partition returned by fileXioOpen
‘buf’ Buffer on EE where datawill be stored when read
‘size Amount of datato read. Must be a multiple of 512 bytes.

Thiswill read data from the extended attribute area of the main partition specified by fd (the
extended attribute areais explained in the introduction to APA).

Returns the number of bytes read on success, or -1 times errno if an error occurred.

int fileXioWrite(int fd, unsigned char *buf, int size);

Analogous to fileXioRead except for this function datais written from EE to the hdd rather
than dataread from the hdd to EE.

int fileXioLseek(int fd, long offset, int whence);

‘fd’ File descriptor for partition returned by fileXioOpen
‘offset’ Distance to move read/write pointer (must be a multiple of 512 bytes)
‘whence One of SEEK_SET, SEEK_CUR, SEEK_END

This moves the read/write position of reading/writing to the extended attribute area of the
partition specified by fd.

Returns the updated position on success, -1 times errno if an error occurred.

18

THE APA DRIVER

int fileXioDevctl(const char *name, int cmd, void *arg, unsigned int arglen,
void *buf,unsigned int buflen);

‘name’ Device name (currently fixed at “hdd0:”)

‘emd’ For the APA driver, one of:
1. HDDCTL_MAX_SECTORS
2. HDDCTL_TOTAL_SECTORS
3. HDDCTL_STATUS
4. HDDCTL_FORMAT
5. HDDCTL_FREE_SECTORS
‘arg’ Command arguments. Depends on cmd.
‘arglen’ Size of arg, in bytes.
‘buf’ Buffer for data received from command. Depends on cmd.
‘buflen’ Size of buf, in bytes.

This function performs special operations for adevice (in this case, the hdd). Seea
subsequent section for details on each command.

Returns a command dependent value on success, or -1 times errno if an error occurred.

int fileXioloctl2(int fd, int command, void *arg, unsigned int arglen, void *buf,
unsigned int buflen);

‘fd’ The fd assigned to the partition, returned by fileXioOpen
‘cmd’ For the APA driver, one of:

1. HDDIO_ADD_SuB

2. HDDIO DELETE_END_SUB

3. HDDIO_NUMBER_OF SUBS

4. HDDIO_GETSIZE
‘arg’ Command arguments. Depends on cmd.
‘arglen’ Size of arg, in bytes.
‘buf’ Buffer for data received from command. Depends on cmd.
‘buflen’ Size of buf, in bytes.

This function performs specia operations on afile descriptor (in this case, an open partition).
See a subsequent section for details on each command.

Returns a command dependent value on success, or -1 times errno if an error occurred.

19

THE APA DRIVER

Devctl commands

HDDCTL_MAX_SECTORS

‘arg’ Must be NULL
‘arglen’ Must be O
‘buf’ Must be NULL
‘buflen’ Must be O

Gets the maximum size for a partition that can be created, in units of sectors (512 byte units).

Returns the maximum size.

HDDCTL_TOTAL_SECTORS

‘arg Must be NULL
‘arglen’ Must be O
‘buf’ Must be NULL
‘buflen’ Must be O

Gets the total capacity of the hdd, in sectors (512 byte units).

Returns the number of sectors.

HDDCTL_DEV9_SHUTDOWN

‘arg’ Must be NULL
‘arglen’ Must be O
‘buf’ Must be NULL
‘buflen’ Must be 0

Powers down the dev9 device which the hdd is connected to. Thisis done by the default
power-off processing code supplied by libHdd.

Returns 0.

20

THE APA DRIVER

HDDCTL_STATUS

‘arg’ Must be NULL
‘arglen’ Must be O
‘buf’ Must be NULL
‘buflen’ Must be O
Gets the hdd status.

Returns a value which corresponds to the current drive status. Possible return values are as
follows:

0—Normad

1 —hdd is not formatted

2—hddislocked

3 —hdd is not connected to the DEV9 device

HDDCTL_FORMAT

‘arg’ Must be NULL
‘arglen’ Must be O
‘buf’ Must be NULL
‘buflen’ Must be 0

Gets the version of the APA system on the hdd.

Returns the version number.

HDDCTL_FREE_SECTORS

‘arg Must be NULL

‘arglen’ Must be O

‘buf’ Pointer to an ‘int’ for storing the free sector amount
‘buflen’ 4

Gets the free space, in sectors, as indicated by the APA driver. The free space valueis stored
in buf.

Returns 0 on success.

21

THE APA DRIVER

loctl2 commands

HDDIO_ADD_SUB

‘arg’ Pointer to the partition size string
‘arglen’ Size of arg

‘buf’ Must be NULL

‘buflen’ Must be O

Adds a sub partition of the size specified by the string pointed to by arg to the main partition
specified by the file descriptor used with the fileXioloctl2 call.

Example:

char subSize[] ="“512M”;
fileXioloctl2(partFd, hddlO_ADD_SUB, subSize, strlen(subSize) + 1, NULL, 0);

Returns 0 on success, -1 times errno if an error occurred.

HDDIO_DELETE_END_SUB

‘arg’ Must be NULL
‘arglen’ Must be 0
‘buf’ Must be NULL
‘buflen’ Must be O

Removes the last sub partition that was created from a main partition. Be warned, this will
destroy a PFS filesystem which is occupying the main & subs.

Returns 0 on success, -1 times errno if an error occurred.

HDDIO_NUMBER_OF_SUBS

‘arg’ Must be NULL
‘arglen’ Must be 0
‘buf’ Must be NULL
‘buflen’ Must be 0

Gets the number of sub partitions attached to a main partition.

Returns the number of sub partitions.

22

THE APA DRIVER

HDDIO_GETSIZE

‘arg’ Pointer to an “int” which contains the “ partition number”
‘arglen’ 4

‘buf’ Must be NULL

‘buflen’ Must be 0

Gets the size of amain partition, or one of the sub partitions linked to it. If the partition
number is 0, then the size of the main partition isretrieved. If the partition number is>= 1,
then the size of sub partition which corresponds to the partition number — 1 isretrieved.

Returns the size of the specified partition, in units of sectors (512 byte units).

23

THE PFS DRIVER

The PFS driver

The PFS driver provides support for using the Playstation Filesystem. The driver sits on top
of the APA driver, so you must have loaded ps2dev9.irx, ps2atad.irx and hdd.irx before
loading the PFS driver. Aswith the APA driver, all access is done through the fileXio file 10
manage.

On loading the PFS driver you can pass arguments to control the memory consumption,
efficiency and other parameters of the driver. The possible arguments are as follows:

-m <#> - Maximum number of simultaneous mounts. In the current
implementation of the driver, each mount consumes 324 bytes of
memory.

-n <#> - Number of buffer/caches to use. Increasing the number of buffers

will generally increase the performance of the driver, at the expense of
increased memory consumption. In the current driver, each buffer
consumes 1052 bytes of memory.

By default 8 buffers are used. Y ou can specify up to 127 buffersto be
used.

-0 <#> - Number of files which may be opened simultaneously. Each open
consumes 1 or 2 buffers, and 560 bytes of memory.

-debug - Enables debug output for the driver. Only really useful if you
experience a problem with the driver and need to get an idea of what
isgoing on.

Throughout the remainder of this chapter, usage of the PFS driver viafileXio is documented.

24

THE PFS DRIVER

Structures

typedef struct {
unsigned int mode;
unsignedint attr;
unsignedint size;
unsigned char ctime[8];
unsigned char atime[8];
unsigned char mtime[8];
unsignedint hisize;
unsignedint private 0;
unsigned int private 1,
unsignedint private 2;
unsigned int private 3;
unsigned int private 4;
unsigned int private 5;

} iox_stat t;
‘mode’ File mode (permissions, file type etc). See the macrosin stat.h from ps2drv
for more information.
‘size Lower 32 bits of the 64-hit file size
‘ctime’ File creation time.
ctime[1] = seconds
ctime[2] = minutes
ctime[3] = hours
ctime[4] = day
ctimg[5] = month
ctime[6 & 7] = year (4 digits)
‘atime’ Last accesstime.
‘mtime’ Last modification time.
‘hisize Upper 32 bits of the 64-hit file size

‘private O User ID (currently unused)
‘private 1’ Group ID (currently unused)
‘private 22 The number of filesystem zones are reserved for thefile.

typedef struct {
iox_stat_t stat;
char name[256];

unsigned int unknown;
} iox_dirent_t;

‘stat’ File status, as described above.
‘name The name of thefile.

25

THE PFS DRIVER

Functions

int fileXioFormat(const char *dev, const char *blockdev, const char *args, int
arglen);

‘dev’ Must be “pfs.”

‘blockdev’ Partition identifier string of partition to be formatted. Must have been created
in advance.

‘args Format parameters.

‘arglen’ Size of args.

Builds a new filesystem by formatting the specified partition with PFS. The zone size for the
new filesystem must be specified in the format parameters. The zone size must be a power of
2 and in the range of 2kb to 128kb. Y ou may also specify afragment pattern, which will be
applied to the zone bitmaps during formatting. Thisisreally only useful for debugging, or if
you would like to know how your program will perform with certain fragmentation.

Example only setting zone size:

int zoneSize = 8192;
fileXioFormat(“pfs.”, “hdd0: XX X", & zoneSize, sizeof(int));

Example of setting fragment pattern:

int formatArg[3];
formatArg[0] = 8192 /l Zone size
formatArg[1] = Ox2dff; /1 “ -, enabled fragment pattern

formatArg[2] = OxfOfOfOf0; // Fragment bit pattern
fileXioFormat(“pfs.”, “hdd0: XX X", formatArg, sizeof(formatArg));

The fragment pattern is repeated over the zone bitmaps during formatting. A binary 1
corresponds to a used zone and a binary O corresponds to a free zone. In the example above
where OxfOfOfOfO is used, the bitmaps will beinitialized such that four zones are used, four
zones are unused, and so on.

Returns 0 on success, -1 times errno if an error occurred.

26

THE PFS DRIVER

int file XioMount(const char* mountpoint, const char* blockdev, int flag);

‘mountpoint’ PFSlogical mount device, ie“pfs0:”, “pfsl.”, “pfs2.” etc

‘blockdev’ Partition identifier string of partition to be mounted. Must have been created
and formatted in advance.

‘flag’ Specifies the access mode for the mount (read-only or read/write). One of
FIO_MT_RDWR or O_FIO_MT_RDONLY. You may also logical OR with
PFS MT_ROBUST to enablerobust mode.

In order to access afilesystem it must first be mounted to afile 10 device. Once it has been
mounted you can operate on the filesystem using standard fileXio calls. The PFS driver
supports mounting filesystems to file 10 devices pfs0: through to pfsO:

The fileXioMount function mounts the “block device” specified by the partition identifier
string blockdev to the file 10 device specified by mountpoint. The filesystem is mounted
either as read-only or read/write. If the filesystem is mounted as read-only then any attempt
to modify the filesystem will fail.

Examples:

fileXioMount(*pfs0:”, “hdd0:Media’, O_RDONLY);
fileXioMount(*pfsl:”, “hdd0:Boot”, O_RDWR);

If robust mode is enabled for a mount, then the PFS driver will not keep any data cached
and any changes to metadata will be written back to disk as soon as they occur. Thiswill help
minimize any risk of filesystem corruption occurring in the case of something like a power
failure. However, the use of robust mode has a SEVERE impart on performance.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioOpen(const char *name, int flags, int modes);

‘name’ Filename of file

‘flags File access mode. One or more (vialogical OR) of O RDONLY,
O_WRONLY, O RDWR, O_APPEND, O_CREAT, O_TRUNC,
O_EXCL

‘modes Initial file permissions (see macros in stat.h of ps2drv)

Creates anew file or opens an existing file. The filename is the name of thefile plus the file
1O device, for example: “pfs0:/somedir/somefile”

Returns the file descriptor (>0) on success, -1 times errno if an error occurred.

27

THE PFS DRIVER

int fileXioClose(int fd);
‘fd’ File descriptor returned by fileXioOpen

Closes an opened file and frees the file descriptor.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioRead(int fd, unsigned char *buf, int size);

‘fd’ File descriptor returned by fileXioOpen
‘buf’ Buffer in EE memory where data will be read to.
‘size Requested amount of data to be read.

Reads at maximum size bytes from a previously opened file into the buffer pointed to by buf.
Performance can be increased if you ensure that the buffer is aligned to a 64 byte boundary,
and even more so if datais read in 512 byte units.

Returns the number of bytes read on success (0 is returned once the end of file has been
reached). -1 times errno is returned if an error occurred.

int fileXioWrite(int fd, unsigned char *buf, int size);

Analogous to fileXioRead except for this function datais written from EE to
the hdd rather than data read from the hdd to EE.

int fileXioLseek(int fd, long offset, int whence);

‘fd’ File descriptor returned by fileXioOpen

‘offset’ Distance to move file pointer.

‘whence One of SEEK_SET, SEEK_CUR, SEEK_END

The current file position is changed according to the offset and whence.

Returns the new file position on success, -1 times errno if an error occurred.

int fileXioRemove(const char *name);

‘name’ The filename (must include file 10 device) of the file to be removed.

Deletes the specified file.

Returns 0 on success, -1 times errno if an error occurred.

28

THE PFS DRIVER

int fileXioRename(const char* source, const char* dest);

‘source Source file/directory
‘dest’ Destination file/directory

Renames afile or directory. If required, performs movement between directories.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioMkdir(const char *name, int mode);

‘name’ Name of directory to be created (including file IO device)
‘mode’ Directory permissions (same as for fileXioOpen)

Creates anew directory.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioRmdir(const char *name);

‘name’ Name of directory to be removed (including file 10 device)
Removes a directory. The directory must be empty, otherwise an error is returned.
Returns 0 on success, -1 times errno if an error occurred.

int fileXioChdir(const char *name);

‘name’ Name of directory to be used as the new “working directory” (including file
1O device).

Changes the current working directory. With PFS, when afileis referenced it can either be
referenced as an absolute path, or relative to the current directory. For example, if the current
directory was “/foo/bar”, then the following two open commands would open the samefile:

fileXioOpen(“ pfs0:/foo/bar/document.dat”);
fileXioOpen(“ pfsO:document.dat”...);

Returns 0 on success, -1 if an error occurred.

29

THE PFS DRIVER

int fileXioDopen(const char *name);
‘name’ Name of directory to open (including file IO device)

Opens a directory. Once the directory has been opened you may retrieve the contents of the
directory with callsto fileXioDread.

Returns the file descriptor (>0) on success, -1 times errno if an error occurred.

int fileXioDclose(int fd);
‘fd’ File descriptor returned by fileXioDopen

Closes a directory opened by fileXioDopen.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioDread(int fd, iox_dirent_t *dirent);

‘fd’ File descriptor returned by fileXioDopen
‘dirent’ Pointer to aiox_dirent_t structure which will be filled according to the next
filein the directory.

In order to retrieve alist of al files/directoriesin adirectory, you can iterate over this
function. Each time this function is called, the next entry in the directory isread and the
structure at dirent isfilled.

Returns the length of the file/directory name (length of string in name member of
iox_dirent_t), or O if the end of the partition list isreached (ie: when thisreturns 0, its time to
stop theiteration). If an error occurred, returns -1 times errno.

int fileXioGetStat(const char *name, iox_stat t *stat);

‘name’ File name (including file 10 device)
‘stat’ Pointer to aiox_stat_t structure which will be filled according to the
properties of thefile.

Retrieves the properties/information for the file/directory specified by name and stores the
information in the buffer pointed to by stat.

Returns 0 on success, -1 times errno if an error occurred.

30

THE PFS DRIVER

int fileXioChStat(const char *name, iox_stat_t *stat, int mask);

‘name’ File name (including file 10 device)

‘stat’ Pointer to aiox_stat_t structure which will be used to ater the
properties of thefile.

‘mask’ Specifies which fieldsin the stat structure should be used to

update the properties of the file. One or more (vialogical OR)
or the following may be specified:

FIO_CST_MODE, FIO_CST ATTR, FIO_CST_SIZE,
FIO_CST_CT, FIO_CST_AT, FIO_CST_MT, FIO_CST_PRVT

Changes the properties of the file/directory specified by name. The properties specified by
mask are updated using the contents of the stat structure.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioSync(const char *devname, int flag);

‘devname’ Mountpoint of filesystem to flush, ie “pfs0.”
‘flag’ Must be O

The PFS driver buffers datain memory to avoid un-necessary writing to the hdd. This
function flushes all the buffers back to the hdd. It aso flushes the hdd' sinternal cache.

Returns 0 on success, -1 times errno if an error occurred.

int fileXioUmount(const char* mountpoint);

‘mountpoint’ Mountpoint of filesystem to be un-mounted.

Unmounts afilesystem. All datafor the filesystem still in the cache is written back.

Returns 0 on success, -1 times errno if an error occurred.

31

THE PFS DRIVER

int fileXioDevctl(const char *name, int cmd, void *arg, unsigned int arglen,
void *buf,unsigned int buflen);

‘name’ Mount point (ie; “pfs0:”, “pfsl:” etc)
‘emd’ For the PFS driver, one of:

1. PFSCTL_GET_ZONE_SIZE
2. PFSCTL_GET ZONE_FREE
3. PFSCTL_CLOSE ALL

‘arg’ Command arguments. Depends on cmd.

‘arglen’ Size of arg, in bytes.

‘buf’ Buffer for data received from command. Depends on cmd.
‘buflen’ Size of buf, in bytes.

This function performs special operations for adevice (in this case, amounted filesystem).
See a subsequent section for details on each command.

Returns a command dependent value on success, or -1 times errno if an error occurred.

int fileXioloctl2(int fd, int command, void *arg, unsigned int arglen, void *buf,
unsigned int buflen);

‘fd’ The fd assigned to thefile, returned by fileXioOpen
‘cmd’ For the PFS driver, one of:

1. PFSIO_ ALLOC
2. PFSIO_FREE

‘arg’ Command arguments. Depends on cmd.

‘arglen’ Size of arg, in bytes.

‘buf’ Buffer for data received from command. Depends on cmd.
‘buflen’ Size of buf, in bytes.

This function performs special operations on afile. See a subsequent section for details on
each command.

Returns a command dependent value on success, or -1 times errno if an error occurred.

32

THE PFS DRIVER

Devctl commands

PFSCTL_GET_ZONE_SIZE

‘arg’ Must be NULL
‘arglen’ Must be O
‘buf’ Must be NULL
‘buflen’ Must be O

Getsthe zone size in bytes.

PFSCTL_GET_ZONE_FREE

‘arg’ Must be NULL
‘arglen’ Must be 0
‘buf’ Must be NULL
‘buflen’ Must be 0

Returns the number of free zones.

PFSCTL_CLOSE_ALL

‘arg’ Must be NULL
‘arglen’ Must be O
‘buf’ Must be NULL
‘buflen’ Must be O

Closes all fileson al mounted filesystems. However, file descriptors do not get freed so only
use this when powering down the system.

33

loctl2 commands

PFSIO_ALLOC

‘arg’ Pointer to an “int” which holds the number of zonesto allocate
‘arglen’ 4

‘buf’ Must be NULL

‘buflen’ Must be 0

Attempts to allocate the number of zones specified by the argument for the file. This can
help speed up writing, as discussed in the PFS overview.

Returns 0 on success, -1 times errno if an error occurred.

PFSIO_FREE

‘arg’ Must be NULL
‘arglen’ Must be 0
‘buf’ Must be NULL
‘buflen’ Must be O

Frees any zones not currently being used by the file (in the event that it was truncated, etc).

Returns 0 on success, -1 times errno if an error occurred.

34

